Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Artificial Intelligence (AI)
Published Researchers discover tissue-specific protection against protein aggregation



Researchers have identified a backup mechanism of protein quality control which prevents the toxic effects of protein aggregation in specific tissues when normal methods of molecular monitoring fail. By understanding how different tissues tackle protein build up, this research could accelerate the identification of ways to protect tissues that are vulnerable to protein build up, possibly tackling both disease-associated protein aggregates and also age-dependent aggregates that accelerate the functional decline of tissues.
Published Verbal nonsense reveals limitations of AI chatbots


The era of artificial-intelligence chatbots that seem to understand and use language the way we humans do has begun. Under the hood, these chatbots use large language models, a particular kind of neural network. But a new study shows that large language models remain vulnerable to mistaking nonsense for natural language. To a team of researchers, it's a flaw that might point toward ways to improve chatbot performance and help reveal how humans process language.
Published Evolution wired human brains to act like supercomputers


Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.
Published From hagfish to membrane: Modeling age-related macular degeneration



Researchers have successfully demonstrated that hagfish slime proteins can accurately replicate membranes in the human eye. Scientists were able to properly grow retinal cells on hagfish slime proteins and prove that the protein's behavior changes as the membrane mimics stages of aging and disease.
Published Flu: Interferon-gamma from T follicular helper cells is required to create lung-resident memory B cells



During a bout of influenza, B cells interact with other immune cells and then take different paths to defend the body. One path is the B cells that differentiate into lung-resident memory B cells, or lung-BRMs, that are critical for pulmonary immunity. These long-lived, non-circulating lung-BRMs migrate to the lungs from draining lymph nodes and reside there permanently as the first layer of defense that can quickly react to produce antibodies in a future infection.
Published Mysterious family of microbial proteins hijack crops' cellular plumbing



Some crop pathogens use a clever trick to multiply and spread infection: they hijack the plant's cellular plumbing. In a new study, researchers unveil a class of bacterial proteins that fold into a straw-like shape and insert themselves into the plant cell membrane, allowing the inside of the leaf to become waterlogged. The researchers also figured out a possible way to block the water channel proteins and prevent infection.
Published A protein on cancer cells supports the immune response against tumors



Scientists identify a new and surprising function of a membrane protein on the surface of cancer cells: It supports and stabilizes an important 'co-stimulatory' factor that enhances the activation of T cells, thus improving the immune response against the tumor.
Published 'Dormant' HIV produces RNA and proteins during anti-retroviral therapy



HIV anti-retroviral therapy is considered a treatment and not a cure because patients usually carry a reservoir of HIV-infected cells that can re-emerge if treatment stops. These reservoirs have long been thought to be dormant, but two independent groups of researchers report that a subset of these cells spontaneously produce HIV RNA and proteins that may impact patients' HIV-specific immune responses.
Published Comprehensive insulin signalling map shows interplay between genes and diet



Researchers have produced a comprehensive picture of insulin signalling in mice and suggest that it is shaped by entangled effects of genetics and diet.
Published Ecology and artificial intelligence: Stronger together


Many of today's artificial intelligence systems loosely mimic the human brain. In a new paper, researchers suggest that another branch of biology -- ecology -- could inspire a whole new generation of AI to be more powerful, resilient, and socially responsible. The paper argues for a synergy between AI and ecology that could both strengthen AI and help to solve complex global challenges, such as disease outbreaks, loss of biodiversity, and climate change impacts.
Published Super antifreeze in cells: The ability to survive in ice and snow developed in animals far earlier than we thought



More than 400 million years ago, an insect-like animal called the springtail developed a small protein that prevents its cells from freezing.
Published Researcher helps boost immune system memory against influenza



Researchers are one step closer to making the T cell army stronger. In a recent study, researchers found that by manipulating one molecular signaling pathway in the T cells that participate in clearing influenza virus in the lungs, the strength and longevity of immunological memory produced can be improved.
Published Auxin signaling pathway controls root hair formation for nitrogen uptake



Root hairs represent a low-cost strategy to enhance nutrient uptake because they can significantly increase the nutrient-acquiring surface of plant roots. While primary and lateral roots are stimulated to elongate when plants grow under mild nitrogen deficiency, the existence of such a foraging response for root hairs and its underlying regulatory mechanism remain elusive. Now, researchers have revealed a framework composed of specific molecular players meditating auxin synthesis, transport and signaling that triggers root hair elongation for nitrogen acquisition.
Published Nutrients drive cellular reprogramming in the intestine



Researchers have unveiled an intriguing phenomenon of cellular reprogramming in mature adult organs, shedding light on a novel mechanism of adaptive growth. The study, which was conducted on fruit flies (Drosophila), provides further insights into dedifferentiation -- where specialized cells that have specific functions transform into less specialized, undifferentiated cells like stem cells.
Published These worms have rhythm



Researchers have developed a new imaging technique to observe active gene expression in real time. They found that four molecules work together to control the timing of each stage of the C. elegans worm's development. This timekeeping process could provide important clues about the natural rhythm of development in humans and other animals.
Published 'Brainless' robot can navigate complex obstacles


Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a 'brainless' soft robot that can navigate more complex and dynamic environments.
Published Online AI-based test for Parkinson's disease severity shows promising results


A new artificial intelligence tool can help people with Parkinson's disease remotely assess the severity of their symptoms within minutes. While expert neurologists performed slightly better than the AI model, the AI model outperformed the primary care physicians with UPDRS certification.
Published Researchers grow embryonic humanized kidneys inside pigs for 28 days



Researchers have successfully created chimeric embryos containing a combination of human and pig cells. When transferred into surrogate pig mothers, the developing humanized kidneys had normal structure and tubule formation after 28 days. This is the first time that scientists have been able to grow a solid humanized organ inside another species, though previous studies have used similar methods to generate human tissues such as blood or skeletal muscle in pigs.
Published Blood-brain barrier governs ant behavior by altering hormone levels



In many animals, including ants, the blood-brain barrier (BBB) ensures normal brain function by controlling the movement of various substances in and out of the brain. Now, researchers have made the unexpected discovery that the BBB in carpenter ants plays an active role in controlling behavior that's essential to the function of entire ant colonies. The key is production in the BBB of a particular hormone-degrading enzyme.
Published Engineers design more powerful RNA vaccines


By adding synergistic self-adjuvanting properties to COVID-19 RNA vaccines, researchers showed they could significantly boost the immune response generated in mice.