Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Two qudits fully entangled      (via sciencedaily.com)     Original source 

Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Simple addition to corn bran could boost grain's nutritional value 15-35%      (via sciencedaily.com)     Original source 

What if, by adding a couple of cell layers inside a corn kernel, the grain could become significantly richer in essential nutrients like iron, zinc, and protein? Such an improvement could benefit people who rely on corn for a large portion of their diet, as in many parts of the global south.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Study links 'stuck' stem cells to hair turning gray      (via sciencedaily.com)     Original source 

Certain stem cells have a unique ability to move between growth compartments in hair follicles, but get stuck as people age and so lose their ability to mature and maintain hair color, a new study shows.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Loops, flags and tension in DNA      (via sciencedaily.com)     Original source 

Two protein complexes carry the major responsibility for the spatial organization of chromosomes in our cell nuclei. DNA tension plays a surprising role in this. Nanoscientists now publish how they have visualized this.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New mechanism for DNA folding      (via sciencedaily.com)     Original source 

A hitherto unknown mechanism for DNA folding is described in a new study. The findings provide new insights into chromosomal processes that are vital to both normal development and to prevent disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Novel nanocages for delivery of small interfering RNAs      (via sciencedaily.com)     Original source 

Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Geoscience: Geochemistry
Published

SpyLigation uses light to switch on proteins      (via sciencedaily.com)     Original source 

Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works. The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Team designs four-legged robotic system that can walk a balance beam      (via sciencedaily.com)     Original source 

Researchers have designed a system that makes an off-the-shelf quadruped robot nimble enough to walk a narrow balance beam -- a feat that is likely the first of its kind.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Molecular 'Superpower' of antibiotic-resistant bacteria      (via sciencedaily.com)     Original source 

A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly in healthcare settings. A study now shows how two molecular mechanisms can work together make the bacterium extra resistant.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Molecular Biology: Zoology
Published

Tracking a new path to octopus and squid sensing capabilities      (via sciencedaily.com)     Original source 

Research has traced the evolutionary adaptations of octopus and squid sensing capabilities. The researchers describe for the first time the structure of an octopus chemotactile receptor, which octopus arms use for taste-by-touch exploration of the seafloor.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Multi-compartment membranes for multicellular robots: Everybody needs some body      (via sciencedaily.com)     Original source 

We typically think of robots as metal objects, filled with motors and circuits. But the field of molecular robotics is starting to change that. Like the formation of complex living organisms, molecular robots derive their form and functionality from assembled molecules stored in a single unit, i.e., a body. Yet manufacturing this body at the microscopic level is an engineering nightmare. Now, a team has created a simple workaround.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How a virus causes chromosomal breakage, leading to cancer      (via sciencedaily.com)     Original source 

Researchers describe how the Epstein-Barr virus exploits genomic weaknesses to cause cancer while reducing the body's ability to suppress it.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Where did the first sugars come from?      (via sciencedaily.com)     Original source 

Origin-of-life chemists propose that glyoxylate could have been the original source of sugars on the 'prebiotic' Earth

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Biologists determine the evolutionary age of individual cell types providing critical insights for animal development      (via sciencedaily.com)     Original source 

A research team has recently made a significant discovery about the evolutionary age of different type of cells in a small animal called Caenorhabditis elegans (C. elegans). By using single-cell transcriptomic data and refined phylostratigraphy, the team determines the transcriptomic age of individual cells, which means they are able to estimate the evolutionary origin of different cells based on the age of the genes expressed in the cells.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Research in Japan shows the way toward tactile and proximity sensing in large soft robots      (via sciencedaily.com)     Original source 

To make human-robot interactions safer and more fruitful, robots should be capable of sensing their environment. In a recent study, researchers developed a novel robotic link with tactile and proximity sensing capabilities. Additionally, they created a simulation and learning framework that can be employed to train the robotic link to sense its environment. Their findings will pave the way to a future where humans and robots can operate harmoniously in close proximity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Biology: Molecular
Published

Study compares de novo proteins with randomly produced proteins      (via sciencedaily.com)     Original source 

In a series of experiments, a team of researchers have compared de novo proteins with random-sequence proteins, looking at their stability and solubility. The results are set to advance basic research in this new field.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

Oral barrier is similar in ceramide composition to skin barrier      (via sciencedaily.com)     Original source 

Acylceramides and protein-bound ceramides are vital for the formation of the oral barrier in mice, similar to their role in skin, protecting from infection.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genes are read faster and more sloppily in old age      (via sciencedaily.com)     Original source 

Scientists have demonstrated the following findings which apply across the animal kingdom: with increasing age, the transcriptional elongation speed of genes increases, whereby the quality of the gene products suffers. With dietary restrictions, these processes could be reversed.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

It's all in the wrist: Energy-efficient robot hand learns how not to drop the ball      (via sciencedaily.com)     Original source 

Researchers have designed a low-cost, energy-efficient robotic hand that can grasp a range of objects -- and not drop them -- using just the movement of its wrist and the feeling in its 'skin'.