Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Space: Astronomy

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Degradation of cell wall key in the spread of antibiotic resistance      (via sciencedaily.com)     Original source 

A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers thwart resistant bacteria's strategy      (via sciencedaily.com)     Original source 

Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Tiny bright objects discovered at dawn of universe baffle scientists      (via sciencedaily.com)     Original source 

A recent discovery by NASA's James Webb Space Telescope (JWST) confirmed that luminous, very red objects previously detected in the early universe upend conventional thinking about the origins and evolution of galaxies and their supermassive black holes.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Too many missing satellite galaxies found      (via sciencedaily.com)     Original source 

Bringing us one step closer to solving the 'missing satellites problem,' researchers have discovered two new satellite galaxies.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

New class of Mars quakes reveals daily meteorite strikes      (via sciencedaily.com)     Original source 

An international team of researchers combine orbital imagery with seismological data from NASA's Mars InSight lander to derive a new impact rate for meteorite strikes on Mars. Seismology also offers a new tool for determining the density of Mars' craters and the age of different regions of a planet.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

The density difference of sub-Neptunes finally deciphered      (via sciencedaily.com)     Original source 

The majority of stars in our galaxy are home to planets. The most abundant are the sub-Neptunes, planets between the size of Earth and Neptune. Calculating their density poses a problem for scientists: depending on the method used to measure their mass, two populations are highlighted, the dense and the less dense. Is this due to an observational bias or the physical existence of two distinct populations of sub-Neptunes? Recent work argues for the latter.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Mathematics: Modeling
Published

New deep-learning model outperforms Google AI system in predicting peptide structures      (via sciencedaily.com)     Original source 

Researchers have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides -- chains of amino acids that are shorter than proteins, but perform similar biological functions. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A promising weapon against measles      (via sciencedaily.com)     Original source 

What happens when measles virus meets a human cell? The viral machinery unfolds in just the right way to reveal key pieces that let it fuse itself into the host cell membrane.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Potent therapy candidate for fatal prion diseases      (via sciencedaily.com)     Original source 

Scientists have developed a gene-silencing tool that shows promise as a therapy against fatal prion diseases. The tool, a streamlined epigenetic editor, paves the way for a new class of genetic approaches to treat certain diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New, holistic way to teach synthetic biology      (via sciencedaily.com)     Original source 

Synthetic biology combines principles from science, engineering and social science, creating emerging technologies such as alternative meats and mRNA vaccines; Deconstructing synthetic biology across scales gives rise to new approach to uniting traditional disciplines; Case studies offer a modular, accessible approach to teaching at different institutions.

Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

From takeoff to flight, the wiring of a fly's nervous system is mapped      (via sciencedaily.com)     Original source 

Although a fly's motor neurons are few, it performs remarkable aerial and terrestrial feats. A wiring diagram recently created of the motor circuits in the central nervous system of the fruit fly is providing detailed information on how the nerve coordination of leg movements differs from that controlling the wings. Such studies reveal the unexpected complexity of the fly's tiny motor system. They also advance the understanding of how the central nervous system in animals coordinates individual muscles to carry out a variety of behaviors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cell division: Before commitment, a very long engagement      (via sciencedaily.com)     Original source 

Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Unlocking the world of bacteria      (via sciencedaily.com)     Original source 

Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The on-and-off affair in DNA      (via sciencedaily.com)     Original source 

Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Pillars of creation star in new visualization from NASA's Hubble and Webb telescopes      (via sciencedaily.com)     Original source 

Made famous in 1995 by NASA's Hubble Space Telescope, the Pillars of Creation in the heart of the Eagle Nebula have captured imaginations worldwide with their arresting, ethereal beauty. Now, NASA has released a new 3D visualization of these towering celestial structures using data from NASA's Hubble and James Webb space telescopes. This is the most comprehensive and detailed multiwavelength movie yet of these star-birthing clouds.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Slipping a note to a neighbor: The cellular way      (via sciencedaily.com)     Original source 

Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Engineering: Nanotechnology
Published

Revealing the dynamic choreography inside multilayer vesicles      (via sciencedaily.com)     Original source 

Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zebrafish reveal how bioelectricity shapes muscle development      (via sciencedaily.com)     Original source 

New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of vast sex differences in cellular activity has major implications for disease treatment      (via sciencedaily.com)     Original source 

The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

New evidence for how heat is transported below the sun's surface      (via sciencedaily.com)     Original source 

Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.