Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Quantum Computers
Published Opening the right doors: 'Jumping gene' control mechanisms revealed



International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published A breakthrough on the edge: One step closer to topological quantum computing



Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Big gain in battle against harmful bacteria



An unexpected find has enabled important progress to be made in the battle against harmful bacteria.
Published New one-step method to make multiple edits to a cell's genome



A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published New bio-based tool quickly detects concerning coronavirus variants



Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.
Published GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins



Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Never-before-seen view of gene transcription captured



New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.
Published Researchers uncover key mechanisms in chromosome structure development



Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published A new breakthrough in understanding regeneration in a marine worm



The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Research shows how RNA 'junk' controls our genes



Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.
Published Proteins and fats can drive insulin production for some, paving way for tailored nutrition



When it comes to managing blood sugar levels, most people think about counting carbs. But new research shows that, for some, it may be just as important to consider the proteins and fats in their diet. The study is the first large-scale comparison of how different people produce insulin in response to each of the three macronutrients: carbohydrates (glucose), proteins (amino acids) and fats (fatty acids). The findings reveal that production of the blood sugar-regulating hormone is much more dynamic and individualized than previously thought, while showing for the first time a subset of the population who are hyper-responsive to fatty foods.
Published Degradation of cell wall key in the spread of antibiotic resistance



A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.
Published Researchers thwart resistant bacteria's strategy



Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.
Published Visual explanations of machine learning models to estimate charge states in quantum dots



To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.