Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Computer Science: Quantum Computers
Published Researchers discover key gene for toxic alkaloid in barley



Barley is one of the most important cereal crops on a global scale. Many barley cultivars produce a toxic alkaloid called gramine that affects the suitability of barley as fodder, but also helps to protect barley from pathogens. So far, the potential of manipulating gramine levels has not been harnessed for plant breeding, because the genetic basis of gramine production has been unresolved. Research groups now disclose the complete biosynthetic pathway of gramine and demonstrate how gramine biosynthesis can be introduced into model organisms or removed from barley.
Published Cell division quality control 'stopwatch' uncovered



Biologists have uncovered a quality control timing mechanism tied to cell division. The 'stopwatch' function keeps track of mitosis and acts as a protective measure when the process takes too long, preventing the formation of cancerous cells.
Published Connecting the dots to shape growth forces



Branching patterns are prevalent in our natural environment and the human body, such as in the lungs and kidneys. For example, specific genes that express growth factor proteins are known to influence the development of the lungs' complex branches. Researchers have unveiled a regulatory system linking signal, force, and shape in mouse lung structure development. The team recognized that the signal protein ERK plays an active role in causing growing lung tissue to curve.
Published New technique for predicting protein dynamics may prove big breakthrough for drug discovery



Understanding the structure of proteins is critical for demystifying their functions and developing drugs that target them. To that end, a team of researchers has developed a way of using machine learning to rapidly predict multiple protein configurations to advance understanding of protein dynamics and functions.
Published A new type of cooling for quantum simulators



Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.
Published Researchers show that introduced tardigrade proteins can slow metabolism in human cells



Tardigrade proteins are potential candidates in technologies centered on slowing the aging process and in long-term storage of human cells.
Published Bullseye! Accurately centering quantum dots within photonic chips



Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.
Published Discovery of amino acid unveils how light makes plants open



Scientists have uncovered a unique mechanism that regulates the opening of stomata in plants. Phosphorylation of the amino acid Thr881 on the plasma membrane proton pump plays a key role in this process. The study paves the way for the targeted manipulation of plant physiology, with potential applications in agriculture and environmental sustainability.
Published Scientists deliver quantum algorithm to develop new materials and chemistry



Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.
Published The world is one step closer to secure quantum communication on a global scale



Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published Novel quantum algorithm for high-quality solutions to combinatorial optimization problems



Conventional quantum algorithms are not feasible for solving combinatorial optimization problems (COPs) with constraints in the operation time of quantum computers. To address this issue, researchers have developed a novel algorithm called post-processing variationally scheduled quantum algorithm. The novelty of this innovative algorithm lies in the use of a post-processing technique combined with variational scheduling to achieve high-quality solutions to COPs in a short time.
Published Natural recycling at the origin of life



How was complex life able to develop on the inhospitable early Earth? At the beginning there must have been ribonucleic acid (RNA) to carry the first genetic information. To build up complexity in their sequences, these biomolecules need to release water. On the early Earth, which was largely covered in seawater, that was not so easy to do.
Published As we age, our cells are less likely to express longer genes



Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.
Published Natural molecule found in coffee and human body increases NAD+ levels, improves muscle function during aging



A research consortium made a recent discovery that the natural molecule trigonelline present in coffee, fenugreek, and also in the human body, can help to improve muscle health and function.
Published Decoding the plant world's complex biochemical communication networks



A research team has begun translating the complex molecular language of petunias. Their grammar and vocabulary are well hidden, however, within the countless proteins and other compounds that fill floral cells. Being rooted to the ground, plants can't run away from insects, pathogens or other threats to their survival. But plant scientists have long known that they do send warnings to each other via scent chemicals called volatile organic compounds.
Published Verifying the work of quantum computers



Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.
Published Quantum talk with magnetic disks



Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.
Published A protein found in human sweat may protect against Lyme disease



Human sweat contains a protein that may protect against Lyme disease. About one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.
Published Where quantum computers can score



The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.