Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's first logical quantum processor      (via sciencedaily.com)     Original source 

A team has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How immune cells recognize their enemies      (via sciencedaily.com)     Original source 

In order for immune cells to do their job, they need to know against whom they should direct their attack. Research teams a have identified new details in this process.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

New genes can arise from nothing      (via sciencedaily.com)     Original source 

The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Fungus-fighting protein could help overcome severe autoimmune disease and cancer      (via sciencedaily.com)     Original source 

A protein in the immune system programmed to protect the body from fungal infections is also responsible for exacerbating the severity of certain autoimmune diseases such as irritable bowel disease (IBS), type 1 diabetes, eczema and other chronic disorders, new research has found.  The discovery could pave the way for new and more effective drugs, without the nasty side effects of existing treatments. In addition to helping to manage severe autoimmune conditions, the breakthrough could also help treat all types of cancer.  

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Influx of water and salts propel immune cells through the body      (via sciencedaily.com)     Original source 

Researchers have shown that an influx of water and ions into immune cells allows them to migrate to where they're needed in the body.  

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Diamonds and rust help unveil 'impossible' quasi-particles      (via sciencedaily.com)     Original source 

Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Sugar permeation discovered in plant aquaporins      (via sciencedaily.com)     Original source 

Aquaporins, which move water through membranes of plant cells, were not thought to be able to permeate sugar molecules, but researchers have observed sucrose transport in plant aquaporins for the first time, challenging this theory.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth      (via sciencedaily.com)     Original source 

Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases      (via sciencedaily.com)     Original source 

While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Biology: Biotechnology Biology: Cell Biology Biology: Molecular Ecology: Invasive Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Unlocking the secret strength of marine mussels      (via sciencedaily.com)     Original source 

How do you create strong, yet quick-release connections between living and non-living tissues? This is a question that continues to puzzle bioengineers who aim to create materials that bond together for advanced biomedical applications. Looking to nature for inspiration, this research zeroed in on the marine mussel byssus, a fibrous holdfast, which these bivalve mollusks use to anchor themselves in seashore habitats.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Shedding light on the synthesis of sugars before the origin of life      (via sciencedaily.com)     Original source 

Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability on early Earth is unclear since these molecules are unstable. Now, researchers reveal a chemical pathway compatible with early Earth conditions, by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding life's origin.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers show an old law still holds for quirky quantum materials      (via sciencedaily.com)     Original source 

Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clever dosage control mechanism of biallelic genes      (via sciencedaily.com)     Original source 

Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Key protein in blood vessel's growth identified      (via sciencedaily.com)     Original source 

New research identifies the class II PI3K-C2b protein, a member of the PI3 family of kinases, as one of the key regulators of blood vessels growth in humans and other mammals. Mutations in these family of proteins may lead to vascular malformations and the precise understanding of the whole process is instrumental in opening the door to new therapeutic approaches in the future.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Releasing brakes on biocatalysis      (via sciencedaily.com)     Original source 

Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.

Computer Science: General Computer Science: Quantum Computers
Published

Quantum tool opens door to uncharted phenomena      (via sciencedaily.com)     Original source 

Scientists have developed a new tool for the measurement of entanglement in many-body systems and demonstrated it in experiments. The method enables the study of previously inaccessible physical phenomena and could contribute to a better understanding of quantum materials.