Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Mathematics: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Molecular
Published

Aligned peptide 'noodles' could enable lab-grown biological tissues      (via sciencedaily.com)     Original source 

Researchers have developed peptide-based hydrogels that mimic the aligned structure of muscle and nerve tissues, which could enable the development of functional lab-grown tissue.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How E. coli get the power to cause urinary tract infections      (via sciencedaily.com)     Original source 

New research examines how the bacteria Escherichia coli, or E. coli -- responsible for most UTIs -- is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues
Published

Plants utilize drought stress hormone to block snacking spider mites      (via sciencedaily.com)     Original source 

Recent findings that plants employ a drought-survival mechanism to also defend against nutrient-sucking pests could inform future crop breeding programs aimed at achieving better broadscale pest control.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New discovery of a mechanism that controls cell division      (via sciencedaily.com)     Original source 

Researchers have discovered that how a special protein complex called the Mediator moves along genes in DNA may have an impact on how cells divide. The discovery may be important for future research into the treatment of certain diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel chemical tool for understanding membrane remodeling in the cell      (via sciencedaily.com)     Original source 

Researchers describe a natural product-like molecule, Tantalosin, that inhibits interaction between two proteins in complexes that reshape membranes inside the cell. The findings lead to a deeper understanding of how membrane remodeling works in human cells and future development of new drugs.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists track 'doubling' in origin of cancer cells      (via sciencedaily.com)     Original source 

Working with human breast and lung cells, scientists say they have charted a molecular pathway that can lure cells down a hazardous path of duplicating their genome too many times, a hallmark of cancer cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Promising new treatment strategy for deadly flu-related brain disorders      (via sciencedaily.com)     Original source 

Researchers have found that a brain disorder associated with flu (influenza-associated encephalopathy, or IAE) can be caused by the influenza virus entering the brain from the blood via endothelial cells. In these cells, the researchers observed viral protein accumulation, suggesting that antivirals targeting viral transcription/translation may be useful treatments for some patients. Given the lack of effective treatments for IAE, this finding will likely improve patient care and reduce IAE-related deaths worldwide.

Chemistry: Biochemistry Chemistry: General Mathematics: General Mathematics: Modeling
Published

Toxic chemicals can be detected with new AI method      (via sciencedaily.com)     Original source 

Researchers have developed an AI method that improves the identification of toxic chemicals -- based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Activation of innate immunity: Important piece of the puzzle identified      (via sciencedaily.com)     Original source 

Researchers have deciphered the complex interplay of various enzymes around the innate immune receptor toll-like receptor 7 (TLR7), which plays an important role in defending our bodies against viruses.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Archaea can be picky parasites      (via sciencedaily.com)     Original source 

A parasite that not only feeds of its host, but also makes the host change its own metabolism and thus biology. Microbiologists have shown this for the very first time in a specific group of parasitic microbes, so-called DPANN archea. Their study shows that these archaea are very 'picky eaters', which might drive their hosts to change the menu.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Key functions of therapeutically promising jumbo viruses      (via sciencedaily.com)     Original source 

Viruses known as 'jumbo' phages are seen as a potential tool against deadly bacterial infections. But scientists must first decipher the extraordinary makeup of these mysterious viruses. Researchers have now uncovered a key piece of jumbo phage development that helps them counter bacteria.

Computer Science: General Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Mathematics: General Mathematics: Modeling Paleontology: Climate
Published

New computer algorithm supercharges climate models and could lead to better predictions of future climate change      (via sciencedaily.com)     Original source 

A study describes a new computer algorithm which can be applied to Earth System Models to drastically reduce the time needed to prepare these in order to make accurate predictions of future climate change. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Offbeat: General Offbeat: Plants and Animals
Published

Marriage of synthetic biology and 3D printing produces programmable living materials      (via sciencedaily.com)     Original source 

Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid 'engineered living materials' are made by embedding cells in an inanimate matrix that's formed in a desired shape. Now, researchers have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Novel genetic plant regeneration approach without the application of phytohormones      (via sciencedaily.com)     Original source 

Conventional plant regeneration approaches by cell culture require the external application of plant growth regulators, including hormones. However, optimizing culture conditions can be laborious. Now, researchers have developed a novel plant regeneration system that omits the need for hormone application by genetically regulating the expression of genes that control plant cell differentiation. Their work holds significant potential in the development of genetically modified plants in a simpler and cost-effective manner.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: General Ecology: Endangered Species Environmental: General Geoscience: Geochemistry
Published

Discovery of mechanism plants use to change seed oil could impact industrial, food oils      (via sciencedaily.com)     Original source 

Researchers have discovered a new mechanism of oil biosynthesis and found a way to genetically engineer a type of test plant to more efficiently produce different kinds of seed oil that it otherwise wouldn't make. While the engineering is proof-of-concept, this discovery could lead to improved production of valuable oils used in food and by a range of industries. The modified plant overcame metabolic bottlenecks and produced significant amounts of an oil similar to castor oil that it doesn't naturally produce.

Computer Science: Quantum Computers Mathematics: General Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The end of the quantum tunnel      (via sciencedaily.com)     Original source 

Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Study details a common bacterial defense against viral infection      (via sciencedaily.com)     Original source 

Researchers report on the molecular assembly of one of the most common anti-phage systems -- from the family of proteins called Gabija -- that is estimated to be used by at least 8.5%, and up to 18%, of all bacteria species on Earth.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

From disorder to order: Flocking birds and 'spinning' particles      (via sciencedaily.com)     Original source 

Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Food in sight? The liver is ready!      (via sciencedaily.com)     Original source 

What happens in the body when we are hungry and see and smell food? A team of researchers has now been able to show in mice that adaptations in the liver mitochondria take place after only a few minutes. Stimulated by the activation of a group of nerve cells in the brain, the mitochondria of the liver cells change and prepare the liver for the adaptation of the sugar metabolism. The findings could open up new avenues for the treatment of type 2 diabetes.