Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Mathematics: General
Published Aligned peptide 'noodles' could enable lab-grown biological tissues



Researchers have developed peptide-based hydrogels that mimic the aligned structure of muscle and nerve tissues, which could enable the development of functional lab-grown tissue.
Published How E. coli get the power to cause urinary tract infections



New research examines how the bacteria Escherichia coli, or E. coli -- responsible for most UTIs -- is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.
Published Plants utilize drought stress hormone to block snacking spider mites



Recent findings that plants employ a drought-survival mechanism to also defend against nutrient-sucking pests could inform future crop breeding programs aimed at achieving better broadscale pest control.
Published New discovery of a mechanism that controls cell division



Researchers have discovered that how a special protein complex called the Mediator moves along genes in DNA may have an impact on how cells divide. The discovery may be important for future research into the treatment of certain diseases.
Published Novel chemical tool for understanding membrane remodeling in the cell



Researchers describe a natural product-like molecule, Tantalosin, that inhibits interaction between two proteins in complexes that reshape membranes inside the cell. The findings lead to a deeper understanding of how membrane remodeling works in human cells and future development of new drugs.
Published Scientists track 'doubling' in origin of cancer cells



Working with human breast and lung cells, scientists say they have charted a molecular pathway that can lure cells down a hazardous path of duplicating their genome too many times, a hallmark of cancer cells.
Published Promising new treatment strategy for deadly flu-related brain disorders



Researchers have found that a brain disorder associated with flu (influenza-associated encephalopathy, or IAE) can be caused by the influenza virus entering the brain from the blood via endothelial cells. In these cells, the researchers observed viral protein accumulation, suggesting that antivirals targeting viral transcription/translation may be useful treatments for some patients. Given the lack of effective treatments for IAE, this finding will likely improve patient care and reduce IAE-related deaths worldwide.
Published Toxic chemicals can be detected with new AI method



Researchers have developed an AI method that improves the identification of toxic chemicals -- based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.
Published Activation of innate immunity: Important piece of the puzzle identified



Researchers have deciphered the complex interplay of various enzymes around the innate immune receptor toll-like receptor 7 (TLR7), which plays an important role in defending our bodies against viruses.
Published Archaea can be picky parasites



A parasite that not only feeds of its host, but also makes the host change its own metabolism and thus biology. Microbiologists have shown this for the very first time in a specific group of parasitic microbes, so-called DPANN archea. Their study shows that these archaea are very 'picky eaters', which might drive their hosts to change the menu.
Published Key functions of therapeutically promising jumbo viruses



Viruses known as 'jumbo' phages are seen as a potential tool against deadly bacterial infections. But scientists must first decipher the extraordinary makeup of these mysterious viruses. Researchers have now uncovered a key piece of jumbo phage development that helps them counter bacteria.
Published New computer algorithm supercharges climate models and could lead to better predictions of future climate change



A study describes a new computer algorithm which can be applied to Earth System Models to drastically reduce the time needed to prepare these in order to make accurate predictions of future climate change. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.
Published Marriage of synthetic biology and 3D printing produces programmable living materials



Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid 'engineered living materials' are made by embedding cells in an inanimate matrix that's formed in a desired shape. Now, researchers have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.
Published Novel genetic plant regeneration approach without the application of phytohormones



Conventional plant regeneration approaches by cell culture require the external application of plant growth regulators, including hormones. However, optimizing culture conditions can be laborious. Now, researchers have developed a novel plant regeneration system that omits the need for hormone application by genetically regulating the expression of genes that control plant cell differentiation. Their work holds significant potential in the development of genetically modified plants in a simpler and cost-effective manner.
Published Discovery of mechanism plants use to change seed oil could impact industrial, food oils



Researchers have discovered a new mechanism of oil biosynthesis and found a way to genetically engineer a type of test plant to more efficiently produce different kinds of seed oil that it otherwise wouldn't make. While the engineering is proof-of-concept, this discovery could lead to improved production of valuable oils used in food and by a range of industries. The modified plant overcame metabolic bottlenecks and produced significant amounts of an oil similar to castor oil that it doesn't naturally produce.
Published Research on RNA editing illuminates possible lifesaving treatments for genetic diseases



The research explores how CRISPR can be used to edit RNA.
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published Study details a common bacterial defense against viral infection



Researchers report on the molecular assembly of one of the most common anti-phage systems -- from the family of proteins called Gabija -- that is estimated to be used by at least 8.5%, and up to 18%, of all bacteria species on Earth.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published Food in sight? The liver is ready!



What happens in the body when we are hungry and see and smell food? A team of researchers has now been able to show in mice that adaptations in the liver mitochondria take place after only a few minutes. Stimulated by the activation of a group of nerve cells in the brain, the mitochondria of the liver cells change and prepare the liver for the adaptation of the sugar metabolism. The findings could open up new avenues for the treatment of type 2 diabetes.