Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Mathematics: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New reasons eating less fat should be one of your resolutions      (via sciencedaily.com)     Original source 

A new study to motivate your New Year's resolutions: it demonstrates that high-fat diets negatively impact genes linked not only to obesity, colon cancer and irritable bowels, but also to the immune system and brain function.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Elusive cytonemes guide neural development, provide signaling 'express route'      (via sciencedaily.com)     Original source 

Discover the first images of cytonemes during mammalian neural development, serving as express routes to establish morphogen gradients and tissue patterning.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Big impacts from small changes in cell      (via sciencedaily.com)     Original source 

Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

How jellyfish regenerate functional tentacles in days      (via sciencedaily.com)     Original source 

At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GPCR structure: Research reveals molecular origins of function for a key drug target      (via sciencedaily.com)     Original source 

Scientists reveal how G protein-coupled receptors, major therapeutic drug targets, decode critical properties of their ligands.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

New tool unifies single-cell data      (via sciencedaily.com)     Original source 

A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Location, location, location: The hidden power of intracellular neighborhoods      (via sciencedaily.com)     Original source 

New findings provide details about the hidden organization of the cytoplasm, showing it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins. The findings hold promise for increasing or altering the production of proteins in mRNA vaccines and therapies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

The future of canine stem cell therapy: unprecedented, painless, and feeder-free      (via sciencedaily.com)     Original source 

Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The key mechanism to cell growth has been elucidated      (via sciencedaily.com)     Original source 

Researchers have discovered how amino acids activate a key cell, TORC1, which is a master regulator in living organisms that controls whether cells grow or recycle their contents in yeast. Notably, the team found that the amino acid cysteine is sensed by a protein called Pib2 and that the two bind together to trigger TORC1. This is important because faulty TORC1 has been linked to disease such as cancer.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Bugs that help bugs: How environmental microbes boost fruit fly reproduction      (via sciencedaily.com)     Original source 

A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers solve mystery behind DnaA protein's role in DNA replication initiation      (via sciencedaily.com)     Original source 

Scientists have uncovered how DnaA, the master key to DNA replication, opens the door to bacterial growth. This breakthroughpaves the way for new antibiotics to combat the rising tide of antibiotic resistance.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New insights revealed on tissue-dependent roles of JAK signaling in inflammation      (via sciencedaily.com)     Original source 

Researchers have gained a deeper understanding of the nuanced roles of JAK inhibitors, or modulators, in inflammation across various cell types and tissues.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How researchers are 'CReATiNG' synthetic chromosomes faster and cheaper      (via sciencedaily.com)     Original source 

A new technique to clone and reassemble DNA, dubbed CReATiNG, could simplify and lower the cost to make synthetic chromosomes. Potential applications are numerous, including pharmaceutical production, biofuel generation, cancer therapies, and environmental cleanup using modified organisms. The method adds a powerful, versatile tool to the burgeoning field of synthetic biology.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Discovery: Plants use 'Trojan horse' to fight mold invasions      (via sciencedaily.com)     Original source 

Scientists have discovered that plants send tiny, innocuous-seeming lipid 'bubbles' filled with RNA across enemy lines, into the cells of the aggressive mold. Once inside, different types of RNA come out to suppress the infectious cells that sucked them in.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A trillion scents, one nose      (via sciencedaily.com)     Original source 

A research team has uncovered a previously undetected mechanism in mice -- starring the genetic molecule RNA -- that could explain how each sensory cell, or neuron, in mammalian noses becomes tailored to detect a specific odor chemical.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cells of the future: A key to reprogramming cell identities      (via sciencedaily.com)     Original source 

The intricate process of duplicating genetic information, referred to as DNA replication, lies at the heart of the transmission of life from one cell to another and from one organism to the next. This happens by not just simply copying the genetic information; a well-orchestrated sequence of molecular events has to happen at the right time. Scientists have recently uncovered a fascinating aspect of this process known as 'replication timing' (RT) and how special this is when life commences.

Biology: Cell Biology Biology: General Biology: Molecular
Published

Study unveils a role of mitochondria in dietary fat processing      (via sciencedaily.com)     Original source 

Researchers discover a new mechanism controlling the uptake of lipids from digested food.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Environmental: Water
Published

The evolutionary timeline of diminished boric acid and urea transportation in aquaporin 10      (via sciencedaily.com)     Original source 

Aquaporin (Aqp) 10 water channels in humans allow the free passage of water, glycerol, urea, and boric acid across cells. However, Aqp10.2b in pufferfishes allows only the passage of water and glycerol and not urea and boric acid. Researchers sought to understand the evolutionary timeline that resulted in the variable substrate selection mechanisms among Aqp10s. Their results indicate that Aqp10.2 in ray-finned fishes may have reduced or lost urea and boric acid permeabilities through evolution.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

New study examines the relationship between the rate of wound healing, the circadian rhythm, and 'hair' on cells      (via sciencedaily.com)     Original source 

Nearly every organism on Earth follows a natural circadian rhythm that is coded by your cell's clock genes, which do exactly as you suspect from the name: regulate your body's rhythm on a 24-hour basis. Most cells in mammalian bodies have cilia of some sort, which are hair-like structures that perform a variety of functions such as movement for motile cilia and aiding in structure in function for non-motile, or primary, cilia. The primary cilia also act as a sensory organ for the cell, a function which has illuminated the primary cilia's potential role in the healing process and how bodies heal at a different rate according to our circadian rhythm. In this research, the role of the primary cilia, biological clock and wound healing is explored.