Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Mathematics: Statistics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researcher uses pressure to understand RNA dynamics      (via sciencedaily.com)     Original source 

Just as space holds infinite mysteries, when we zoom in at the level of biomolecules (one trillion times smaller than a meter), there is still so much to learn. Scientists are studying the conformational landscapes of biomolecules and how they modulate cell function. When biomolecules receive certain inputs, it can cause the atoms to rearrange and the biomolecule to change shape. This change in shape affects their function in cells, so understanding conformational dynamics is critical for drug development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

The molecular control center of our protein factories      (via sciencedaily.com)     Original source 

Researchers have deciphered a biochemical mechanism that ensures that newly formed proteins are processed correctly when they leave the cell's own protein factories. This solves a decade-old puzzle in protein sorting.

Computer Science: General Mathematics: Modeling Mathematics: Statistics
Published

Generative AI models are encoding biases and negative stereotypes in their users      (via sciencedaily.com)     Original source 

In the space of a few months generative AI models, such as ChatGPT, Google's Bard and Midjourney, have been adopted by more and more people in a variety of professional and personal ways. But growing research is underlining that they are encoding biases and negative stereotypes in their users, as well as mass generating and spreading seemingly accurate but nonsensical information. Worryingly, marginalized groups are disproportionately affected by the fabrication of this nonsensical information.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Studying herpes encephalitis with mini-brains      (via sciencedaily.com)     Original source 

The herpes simplex virus-1 can sometimes cause a dangerous brain infection. Combining an anti-inflammatory and an antiviral could help in these cases, report scientists.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Unraveling the connections between the brain and gut      (via sciencedaily.com)     Original source 

Engineers designed a technology to probe connections between the brain and the digestive tract. Using fibers embedded with a variety of sensors, as well as optogenetic stimulation, the researchers could control neural circuits connecting the gut and the brain, in mice.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Now, every biologist can use machine learning      (via sciencedaily.com)     Original source 

Scientists have built a new, comprehensive AutoML platform designed for biologists with little to no ML experience. New automated machine learning platform enables easy, all-in-one analysis, design, and interpretation of biological sequences with minimal coding. Their platform, called BioAutoMATED, can use sequences of nucleic acids, peptides, or glycans as input data, and its performance is comparable to other AutoML platforms while requiring minimal user input.

Mathematics: Modeling Mathematics: Statistics
Published

Bridging traditional economics and econophysics      (via sciencedaily.com)     Original source 

How do asset markets work? Which stocks behave similarly? Economists, physicists, and mathematicians work intensively to draw a picture but need to learn what is happening outside their discipline. A new paper now builds a bridge.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tethering of shattered chromosomal fragments paves way for new cancer therapies      (via sciencedaily.com)     Original source 

Scientists discover shattered chromosomal fragments are tethered together during cell division before being rearranged; destroying the tether may help prevent cancerous mutations.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Close up on aging reveals how different cell types in the body age at different pace      (via sciencedaily.com)     Original source 

A team or researchers reports the first Aging Fly Cell Atlas (AFCA), a detailed characterization of the aging process in 163 distinct cell types in the laboratory fruit fly. Their in-depth analysis revealed that different cell types in the body age differently, each cell type following a process involving cell type-specific patterns. AFCA provides a valuable resource for researchers in the fruit fly and aging communities as a reference to study aging and age-related diseases and to evaluate the success of anti-aging strategies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists discover small RNA that regulates bacterial infection      (via sciencedaily.com)     Original source 

Researchers have identified the major mechanism behind the transition between chronic and acute P. aeruginosa infections. Their research findings can inform the development of future treatments for life-threatening acute infections.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

First illustration of the molecular machinery that makes cilia beat      (via sciencedaily.com)     Original source 

The first image of the structures that power human cilia -- the tiny, hairlike projections that line our airways -- has now been produced and it could lead to much-needed treatments for people with rare cilial diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Ecology: Sea Life Environmental: Water Geoscience: Oceanography
Published

When water temperatures change, the molecular motors of cephalopods do too      (via sciencedaily.com)     Original source 

Working with live squid hatchlings, scientists find the animals can tune their proteome on the fly in response to changes in ocean temperature via the unique process of RNA recoding. The findings inspire new questions about basic protein function.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Study unravels the mysteries of actin filament polarity      (via sciencedaily.com)     Original source 

An electron microscopy study revealed key details of actin filaments, which are essential structural elements of cells and muscles.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Octopuses rewire their brains to adapt to seasonal temperature shifts      (via sciencedaily.com)     Original source 

Octopuses don't thermoregulate, so their powerful brains are exposed to -- and potentially threatened by -- changes in temperature. Researchers report that two-spot octopuses adapt to seasonal temperature shifts by producing different neural proteins under warm versus cool conditions. The octopuses achieve this by editing their RNA, the messenger molecule between DNA and proteins. This rewiring likely protects their brains, and the researchers suspect that this unusual strategy is used widely amongst octopuses and squid.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A compound from fruit flies could lead to new antibiotics      (via sciencedaily.com)     Original source 

Research shows that the natural peptide, called drosocin, protects fruit flies from bacterial infections by binding to ribosomes in bacteria. Once bound, drosocin prevents the ribosome from making new proteins.