Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Mathematics: Statistics
Published Researcher uses pressure to understand RNA dynamics



Just as space holds infinite mysteries, when we zoom in at the level of biomolecules (one trillion times smaller than a meter), there is still so much to learn. Scientists are studying the conformational landscapes of biomolecules and how they modulate cell function. When biomolecules receive certain inputs, it can cause the atoms to rearrange and the biomolecule to change shape. This change in shape affects their function in cells, so understanding conformational dynamics is critical for drug development.
Published The molecular control center of our protein factories



Researchers have deciphered a biochemical mechanism that ensures that newly formed proteins are processed correctly when they leave the cell's own protein factories. This solves a decade-old puzzle in protein sorting.
Published The clue is in the glue -- Nature's secret for holding it together



An obscure aquatic plant has helped to explain how plants avoid cracking up under the stresses and strains of growth.
Published Generative AI models are encoding biases and negative stereotypes in their users



In the space of a few months generative AI models, such as ChatGPT, Google's Bard and Midjourney, have been adopted by more and more people in a variety of professional and personal ways. But growing research is underlining that they are encoding biases and negative stereotypes in their users, as well as mass generating and spreading seemingly accurate but nonsensical information. Worryingly, marginalized groups are disproportionately affected by the fabrication of this nonsensical information.
Published Studying herpes encephalitis with mini-brains



The herpes simplex virus-1 can sometimes cause a dangerous brain infection. Combining an anti-inflammatory and an antiviral could help in these cases, report scientists.
Published Unraveling the connections between the brain and gut



Engineers designed a technology to probe connections between the brain and the digestive tract. Using fibers embedded with a variety of sensors, as well as optogenetic stimulation, the researchers could control neural circuits connecting the gut and the brain, in mice.
Published Now, every biologist can use machine learning



Scientists have built a new, comprehensive AutoML platform designed for biologists with little to no ML experience. New automated machine learning platform enables easy, all-in-one analysis, design, and interpretation of biological sequences with minimal coding. Their platform, called BioAutoMATED, can use sequences of nucleic acids, peptides, or glycans as input data, and its performance is comparable to other AutoML platforms while requiring minimal user input.
Published DNA can fold into complex shapes to execute new functions



DNA can mimic protein functions by folding into elaborate, three-dimensional structures, according to a new study.
Published Researchers reveal mechanism of protection against breast and ovarian cancer



Researchers have outlined the structure and function of a protein complex which is required to repair damaged DNA and protect against cancer.
Published Scientists discover new embryonic cell type that self-destructs to protect the developing embryo



Scientists have uncovered a new quality control system that removes damaged cells from early developing embryos.
Published The speed of life: A zoo of cells to study developmental time



Researchers have used an unprecedented stem cell zoo to compare six different mammalian species and their developmental time.
Published Bridging traditional economics and econophysics



How do asset markets work? Which stocks behave similarly? Economists, physicists, and mathematicians work intensively to draw a picture but need to learn what is happening outside their discipline. A new paper now builds a bridge.
Published Tethering of shattered chromosomal fragments paves way for new cancer therapies



Scientists discover shattered chromosomal fragments are tethered together during cell division before being rearranged; destroying the tether may help prevent cancerous mutations.
Published Close up on aging reveals how different cell types in the body age at different pace



A team or researchers reports the first Aging Fly Cell Atlas (AFCA), a detailed characterization of the aging process in 163 distinct cell types in the laboratory fruit fly. Their in-depth analysis revealed that different cell types in the body age differently, each cell type following a process involving cell type-specific patterns. AFCA provides a valuable resource for researchers in the fruit fly and aging communities as a reference to study aging and age-related diseases and to evaluate the success of anti-aging strategies.
Published Scientists discover small RNA that regulates bacterial infection



Researchers have identified the major mechanism behind the transition between chronic and acute P. aeruginosa infections. Their research findings can inform the development of future treatments for life-threatening acute infections.
Published First illustration of the molecular machinery that makes cilia beat



The first image of the structures that power human cilia -- the tiny, hairlike projections that line our airways -- has now been produced and it could lead to much-needed treatments for people with rare cilial diseases.
Published When water temperatures change, the molecular motors of cephalopods do too



Working with live squid hatchlings, scientists find the animals can tune their proteome on the fly in response to changes in ocean temperature via the unique process of RNA recoding. The findings inspire new questions about basic protein function.
Published Study unravels the mysteries of actin filament polarity



An electron microscopy study revealed key details of actin filaments, which are essential structural elements of cells and muscles.
Published Octopuses rewire their brains to adapt to seasonal temperature shifts



Octopuses don't thermoregulate, so their powerful brains are exposed to -- and potentially threatened by -- changes in temperature. Researchers report that two-spot octopuses adapt to seasonal temperature shifts by producing different neural proteins under warm versus cool conditions. The octopuses achieve this by editing their RNA, the messenger molecule between DNA and proteins. This rewiring likely protects their brains, and the researchers suspect that this unusual strategy is used widely amongst octopuses and squid.
Published A compound from fruit flies could lead to new antibiotics



Research shows that the natural peptide, called drosocin, protects fruit flies from bacterial infections by binding to ribosomes in bacteria. Once bound, drosocin prevents the ribosome from making new proteins.