Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Ecology: General
Published Global deforestation leads to more mercury pollution



Researchers find deforestation accounts for about 10 percent of global human-made mercury emissions. While it cannot be the only solution, they suggest reforestation could increase global mercury uptake by about 5 percent.
Published Alien invasion: Non-native earthworms threaten ecosystems



Analysis reveals imported earthworm species have colonized large swaths of North America, and represent a largely overlooked threat to native ecosystems. The researchers warn of the need to better understand and manage the invaders in our midst.
Published New research uncovers biological drivers of heart disease risk



Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact.
Published Gut microbiome changes during pregnancy may influence immune system response



A new study identifies numerous pathways by which the gut microbiome may change the immune system.
Published How kelp forests persisted through the large 2014-2016 Pacific marine heatwave



New research reveals that denser, and more sheltered, kelp forests can withstand serious stressors amid warming ocean temperatures.
Published New approach to tackling bacterial infections identified



Researchers have identified a new approach to controlling bacterial infections. The team found a way to turn on a vital bacterial defense mechanism to fight and manage bacterial infections. The defense system, called cyclic oligonucleotide-based antiphage signaling system (CBASS), is a natural mechanism used by certain bacteria to protect themselves from viral attacks. Bacteria self-destruct as a means to prevent the spread of virus to other bacterial cells in the population.
Published Researchers discover key to molecular mystery of how plants respond to changing conditions



A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.
Published Complex tree canopies help forests recover from moderate-severity disturbances



Extreme events wipe out entire forests, dramatically eliminating complex ecosystems as well as local communities. Researchers have become quite familiar with such attention-grabbing events over the years. They know less, however, about the more common moderate-severity disturbances, such as relatively small fires, ice storms, and outbreaks of pests or pathogens.
Published Scientists develop new biocontainment method for industrial organisms



Researchers have developed a new biocontainment method for limiting the escape of genetically engineered organisms used in industrial processes.
Published Apex predators not a quick fix for restoring ecosystems



An experiment spanning more than two decades has found that removal of apex predators from an ecosystem can create lasting changes that are not reversed after they return -- at least, not for a very long time. The study challenges the commonly held belief that the reintroduction of wolves to Yellowstone National Park restored an ecosystem degraded by their absence.
Published Extra fingers and hearts: Pinpointing changes to our genetic instructions that disrupt development



Scientists can now predict which single-letter changes to the DNA within our genomes will alter genetic instructions and disrupt development, leading to changes such as the growth of extra digits and hearts. Such knowledge opens the door to predictions of which enhancer variants underlie disease in order to harness the full potential of our genomes for better human health.
Published Computer-engineered DNA to study cell identities



A new computer program allows scientists to design synthetic DNA segments that indicate, in real time, the state of cells. It will be used to screen for anti-cancer or viral infections drugs, or to improve gene and cell-based immunotherapies.
Published Small but mighty -- study highlights the abundance and importance of the ocean's tiniest inhabitants



New research sheds light on tiny plankton, which measure less than 0.02mm in diameter but can make up more than 70% of the plankton biomass found in the ocean.
Published How food availability could catalyze cultural transmission in wild orangutans



The proverb "necessity is the mother of invention" has been used to describe the source from which our cultural evolution springs. After all, need in times of scarcity has forced humans to continually invent new technologies that have driven the remarkable cumulative culture of our species. But an invention only becomes cultural if it is learned and spread by many individuals. In other words, the invention must be socially transmitted. But what are the forces that drive social transmission?
Published Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean



The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.
Published Scientists see an ultra-fast movement on surface of HIV virus



Seeing a glycoprotein on the envelope of the HIV virus snap open and shut in mere millionths of a second is giving investigators a new handle on the surface of the virus that could lead to broadly neutralizing antibodies for an AIDS vaccine. Being able to attach an antibody specifically to this little structure that would prevent it from popping open would be key.
Published Mechanism discovered that protects tissue after faulty gene expression



A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.
Published Scammed! Animals 'led by the nose' to leave plants alone



Fake news works for wallabies and elephants. Herbivores can cause substantial damage to crops or endangered or protected plants, with traditional methods to deter foraging lethal, expensive or ineffective. Biologists are now using aromas from plants naturally repellent with remarkable success to deter the animals.
Published Disrupted cellular function behind type 2 diabetes in obesity



Disrupted function of 'cleaning cells' in the body may help to explain why some people with obesity develop type 2 diabetes, while others do not. A study describes this newly discovered mechanism.
Published A clutch stretch goes a long way



New results reveal a new mode of force transmission in which dynamic molecular stretching bridges the extracellular matrix and flowing F-actin moving at different speeds. This discovery underscores the necessity of molecular elasticity and random coupling for sufficiently transmitting force. The findings also call for revising the role of molecular unfolding.