Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Ecology: Endangered Species
Published Luring the virus into a trap



Viruses like influenza A and Ebola invade human cells in a number of steps. Research teams investigated the final stages of viral penetration using electron tomography and computer simulations. So-called fusion pores, through which the viral genome is released into the host cell, play a central role in these processes. If they can be prevented from forming, the virus is also blocked. The Heidelberg scientists describe previously unknown mechanisms, which might lead to new approaches to prevent infections.
Published Researchers reveal an ancient mechanism for wound repair



The study is the first to identify a damage response pathway that is distinct from but parallel to the classical pathway triggered by pathogens.
Published 360-million-year-old Irish fossil provides oldest evidence of plant self-defense in wood



Scientists have discovered the oldest evidence of plant self-defense in wood in a 360-million-year-old fossil from south-eastern Ireland. Plants can protect their wood from infection and water loss by forming special structures called 'tyloses'. These prevent bacterial and fungal pathogens from getting into the heartwood of living trees and damaging it. However, it was not previously known how early in the evolution of plants woody species became capable of forming such defenses. Published today in Nature Plants is the oldest evidence of tylosis formation from Late Devonian (360-million-year-old) fossil wood from the Hook Head Peninsula area, Co. Wexford, Ireland.
Published Researchers reveal a map to study novel form of cell-to-cell communication



An international team of researchers lays the foundation to examine how extracellular RNA and its carrier proteins found in bodily fluids function in a healthy as well as a diseased setting, potentially providing a means to accurately implement early detection and monitor disease processes.
Published Synthetic biology meets fashion in engineered silk



Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published Engineering the next generation of cell and gene therapies



Investigators are developing a novel way to treat amyotrophic lateral sclerosis (ALS) and retinitis pigmentosa using engineered stem cells that may eventually lead to personalized treatments.
Published African penguins: Climate refugees from a distant past?



Imagine the view from the western coastline of southern Africa during the Last Glacial Maximum (LGM) over twenty thousand years ago: in the distance you would see at least fifteen large islands -- the largest 300 square kilometers in area -- swarming with hundreds of millions of marine birds and penguin colonies.
Published Simple addition to corn bran could boost grain's nutritional value 15-35%



What if, by adding a couple of cell layers inside a corn kernel, the grain could become significantly richer in essential nutrients like iron, zinc, and protein? Such an improvement could benefit people who rely on corn for a large portion of their diet, as in many parts of the global south.
Published Study links 'stuck' stem cells to hair turning gray



Certain stem cells have a unique ability to move between growth compartments in hair follicles, but get stuck as people age and so lose their ability to mature and maintain hair color, a new study shows.
Published Loops, flags and tension in DNA



Two protein complexes carry the major responsibility for the spatial organization of chromosomes in our cell nuclei. DNA tension plays a surprising role in this. Nanoscientists now publish how they have visualized this.
Published New mechanism for DNA folding



A hitherto unknown mechanism for DNA folding is described in a new study. The findings provide new insights into chromosomal processes that are vital to both normal development and to prevent disease.
Published Novel nanocages for delivery of small interfering RNAs



Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published Fluorescent blue coumarins in a folk-medicine plant could help us see inside cells



Plants that glow under ultraviolet (UV) light aren't only a figment of science fiction TV and movies. Roots of a traditional medicine plant called the orange climber, or Toddalia asiatica, can fluoresce an ethereal blue hue. And now, researchers have identified two coumarin molecules that could be responsible. These natural coumarins have unique fluorescent properties, and one of the compounds could someday be used for medical imaging.
Published The diversity of present tree species is shaped by climate change in the last 21,000 years



A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.
Published SpyLigation uses light to switch on proteins



Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works. The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle.
Published Less ice, fewer calling seals



For several years, a team of researchers used underwater microphones to listen for seals at the edge of the Antarctic. Their initial findings indicate that sea-ice retreat has had significant effects on the animals' behavior: when the ice disappears, areas normally full of vocalizations become very quiet.
Published Molecular 'Superpower' of antibiotic-resistant bacteria



A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly in healthcare settings. A study now shows how two molecular mechanisms can work together make the bacterium extra resistant.
Published How can a pollinating insect be recognized in the fossil record?



Insect pollination is a decisive process for the survival and evolution of angiosperm (flowering) plants and, to a lesser extent, gymnosperms (without visible flower or fruit). There is a growing interest in studies on the origins of the relationship between insects and plants, especially in the current context of the progressive decline of pollinating insects on a global scale and its impact on food production. Pollinating insects can be recognized in the fossil record, although to date, there has been no protocol for their differentiation. Fossil pollinators have been found in both rock and amber deposits, and it is in rock deposits that the first evidence of plant pollination by insects is being studied across the globe. But how can we determine which was a true insect pollinator in the past?