Showing 20 articles starting at article 221

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Ecology: Endangered Species

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Biology: Molecular
Published

Intermittent fasting shows promise in improving gut health, weight management      (via sciencedaily.com)     Original source 

Participants following an intermittent fasting and protein-pacing regimen, which involves evenly spaced protein intake throughout the day, saw better gut health, weight loss and metabolic responses. These benefits were notably greater than those seen with simple calorie restriction. The findings could advance our understanding of the relationship between the gut microbiome and metabolism and improve strategies for managing obesity.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species
Published

Scientists identify gene that could lead to resilient 'pixie' corn      (via sciencedaily.com)     Original source 

A widely found gene in plants has been newly identified as a key transporter of a hormone that influences the size of corn. The discovery offers plant breeders a new tool to develop desirable dwarf varieties that could enhance the crop's resilience and profitability.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mechanisms for selective multiple sclerosis treatment strategy      (via sciencedaily.com)     Original source 

Researchers have demonstrated how B cells infected with the Epstein-Barr virus (EBV) can contribute to a pathogenic, inflammatory phenotype that contributes to multiple sclerosis (MS); the group has also shown how these problematic B cells can be selectively targeted in a way that reduces the damaging autoimmune response of multiple sclerosis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

'Cloaked' proteins deliver cancer-killing therapeutics into cells      (via sciencedaily.com)     Original source 

Scientists have designed a way to 'cloak' proteins in a generalized technique that could lead to repurposing things like antibodies for biological research and therapeutic applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genetic mosaicism more common than thought      (via sciencedaily.com)     Original source 

Researchers found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality. Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings. The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.

Biology: Biochemistry Biology: Botany Chemistry: Biochemistry Ecology: Endangered Species Ecology: Nature Energy: Technology
Published

Harnessing green energy from plants depends on their circadian rhythms      (via sciencedaily.com)     Original source 

Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.

Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species Ecology: Nature
Published

Transgenic expression of rubisco factors increases photosynthesis and chilling tolerance in maize      (via sciencedaily.com)     Original source 

Maize is one of the world's most widely grown crops and is essential to global food security. But like other plants, its growth and productivity can be limited by the slow activity of Rubisco, the enzyme responsible for carbon assimilation during photosynthesis. Scientists have now demonstrated a promising approach to enhancing Rubisco production, thus improving photosynthesis and overall plant growth.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

Observing mammalian cells with superfast soft X-rays      (via sciencedaily.com)     Original source 

Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.

Biology: Biochemistry Biology: Botany Biology: Genetics Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals
Published

Key role of plant-bacteria communication for the assembly of a healthy plant microbiome supporting sustainable plant nutrition      (via sciencedaily.com)     Original source 

In an interdisciplinary study, researchers discovered that symbiotic bacteria communicate with legume plants through specific molecules and that this communication influences which bacteria grow near the plant roots. The findings provide insights into how plants and soil bacteria form beneficial partnerships for nutrient uptake and resilience. These results are a step towards understanding how communication between plants and soil bacteria can lead to specific beneficial associations providing plants with nutrients.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New 'atlas' provides unprecedented insights on how genes function in early embryo development      (via sciencedaily.com)     Original source 

Biologists have provided new insights on a longstanding puzzle in biology: How complex organisms arise from a single fertilized cell. Producing a new 'gene atlas' with 4-D imaging, the researchers captured unprecedented insights on how embryonic development unfolds.

Biology: General Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Sea Life
Published

Designing a better nest to help endangered turtles      (via sciencedaily.com)     Original source 

With Ontario's eight species of turtles considered at risk, a new nest designed by researchers has the potential to significantly bolster their struggling populations. The habitat is the first designed for turtles in rock barren landscapes, such as the research site around Georgian Bay. It uses moss and lichen. The researchers found that the design provided a more stable environment for incubating eggs compared to natural sites, where the probability of an egg hatching was only 10 per cent compared to 41 per cent in the created site.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel approach to interrogate tissue-specific protein-protein interactions      (via sciencedaily.com)     Original source 

Multicellular organisms, like animals and plants, have complex cells with diverse functions. This complexity arises from the need for cells to produce distinct proteins that interact with each other. This interaction is crucial for cells to carry out their specific tasks and to form complex molecular machinery. However, our current understanding of such protein-protein interactions often lacks cellular contexts because they were usually studied in an in vitro system or in cells isolated from their tissue environment. Effective methods to investigate protein-protein interactions in a tissue-specific manner are largely missing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tracking down the genetic causes of lupus to personalize treatment      (via sciencedaily.com)     Original source 

Treatment of autoimmune diseases like lupus has long relied on steroids to knock down the immune system, but more targeted therapies are currently undergoing clinical trials. To make sure these therapies get to the patients who will benefit, work is needed to identify the specific mutations behind each patient's disease. Researchers now report several dozen mutations associated with oversensitive toll-like receptors -- a major cause of autoimmune disease -- and linked two mutations to patients.

Biology: Biochemistry Biology: Biotechnology Ecology: Animals Ecology: Endangered Species Ecology: Nature
Published

Escaped GMO canola plants persist long-term, but may be losing their extra genes      (via sciencedaily.com)     Original source 

Populations of canola plants genetically engineered to be resistant to herbicides can survive outside of farms, but may be gradually losing their engineered genes, reports a new study.

Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature
Published

Community science volunteers can set scientific world abuzz with new bumble bee sightings      (via sciencedaily.com)     Original source 

Community science volunteers -- laypeople with an interest in bees and conservation -- significantly contribute to the scientific knowledge of native bumble bees across Canada and the United States. It's buzz worthy confirmation that community science programs can play an important role in monitoring the changing distributions of bumble bees and more.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Exploring diversity in cell division      (via sciencedaily.com)     Original source 

Animals and fungi predominantly use two different modes of cell division -- called open and closed mitosis, respectively. A new study has shown that different species of Ichthyosporea -- marine protists that are close relatives of both animals and fungi -- use either open and closed mitosis, closely correlated to whether the species has multinucleate life cycle stages. The study demonstrates the way animals do cell division might have evolved long before animals themselves did and how this is linked to an organism's life cycle.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Sweet move: a modified sugar enhances antisense oligonucleotide safety and efficacy      (via sciencedaily.com)     Original source 

Researchers found that adding a newly developed modified sugar, BNAP-AEO, to gapmer antisense oligonucleotides (ASOs) increased their affinity for target RNAs, thus significantly enhancing their gene-silencing effects in vitro and in vivo. The BNAP-AEO modification also decreased gapmer ASO toxicity to the central nervous system (CNS), suggesting that it could improve the clinical application of ASO treatment of CNS disease.

Biology: Biochemistry Biology: Genetics Ecology: Endangered Species Geoscience: Environmental Issues
Published

Roots are a key to drought-tolerant maize      (via sciencedaily.com)     Original source 

Maize can grow successfully in very different local conditions. An international study has now demonstrated the important role of the plant root system. The researchers analyzed more than 9,000 varieties in the study and were able to show that their roots varied considerably -- depending on how dry the location is where each variety was cultivated. They were also able to identify an important gene that plays a role in the plant's ability to adapt. This gene could be the key to developing varieties of maize that cope better with climate change.