Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Ecology: Invasive Species

Return to the site home page

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: General
Published

Discovery of a hybrid lineage offers clues to how trees adapt to climate change      (via sciencedaily.com)     Original source 

The discovery of a hybrid population of poplar trees in western Wyoming has provided insight into how natural hybridization informs the evolution of many plant species, according to researchers. They also said their discovery suggests that genetic exchange between species may be critical for adaptation to environmental change.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Paleolithic diets are not without risks      (via sciencedaily.com)     Original source 

High-protein diets, known as 'Paleolithic diets', are popular. Using mouse models, scientists have studied their impact. While effective in regulating weight and stabilizing diabetes, these diets are not without risks. Excess protein greatly increases ammonium production, overwhelming the liver. Excess ammonium can cause neurological disorders and, in severe cases, lead to coma. These results suggest caution when following these diets.

Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues
Published

Forests endure as carbon sink despite regional pressures      (via sciencedaily.com)     Original source 

Despite facing regional threats like deforestation and wildfires, the world's forests continue to be a powerful weapon in the fight against climate change. A new study reveals these vital ecosystems have consistently absorbed carbon dioxide for the past three decades, even as disruptions chip away at their capacity. The study, based on long-term ground measurements combined with remote sensing data, found that forests take up an average of 3.5 0.4 billion metric tons of carbon per year, which is nearly half of the carbon dioxide emissions from burning fossil fuels between 1990 and 2019.

Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Logged forests can still have ecological value -- if not pushed too far      (via sciencedaily.com)     Original source 

Researchers have analysed data from 127 studies to reveal 'thresholds' for when logged rainforests lose the ability to sustain themselves. The results could widen the scope of which forests are considered 'worth' conserving, but also show how much logging degrades forests beyond the point of no return.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Genome recording makes living cells their own historians      (via sciencedaily.com)     Original source 

Genomes can now be used to store information about a variety of transient biological events inside of living cells, as they happen, like a flight recorder collecting data from an aircraft. The method, called ENGRAM, aims to turn cells into their own historians. ENGRAM couples each kind of biological signal or event inside a cell to a symbolic barcode. This new strategy traces and archives the type and timing of biological signals inside the cell by inserting this information into the genome. For example, this record-keeping can track the commands that turn genes on or off.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Ecology: Animals
Published

Influenza viruses can use two ways to infect cells      (via sciencedaily.com)     Original source 

Most influenza viruses enter human or animal cells through specific pathways on the cells' surface. Researchers have now discovered that certain human flu viruses and avian flu viruses can also use a second entry pathway, a protein complex of the immune system, to infect cells. This ability helps the viruses infect different species -- and potentially jump between animals and humans.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new addition to the CRISPR toolbox: Teaching the gene scissors to detect RNA      (via sciencedaily.com)     Original source 

CRISPR-Cas systems, defense systems in bacteria, have become a plentiful source of technologies for molecular diagnostics. Researchers have now expanded this extensive toolbox further. Their novel method, called PUMA, enables the detection of RNA with Cas12 nucleases, which naturally target DNA. PUMA promises a wide range of applications and high accuracy.

Biology: Biochemistry Biology: Botany Biology: General Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Geography
Published

Scientists use machine learning to predict diversity of tree species in forests      (via sciencedaily.com)     Original source 

Researchers used machine learning to generate highly detailed maps of over 100 million individual trees from 24 sites across the U.S. These maps provide information about individual tree species and conditions, which can greatly aid conservation efforts and other ecological projects.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Physics: Optics
Published

Immune system in the spotlight      (via sciencedaily.com)     Original source 

Our immune system is always on alert, detecting and eliminating pathogens and cancer cells. Cellular control mechanisms cause diseased cells to present antigens on their surface like signs for the immune system. For analysis of the necessary complex antigen processing and transport processes in real time, researchers have developed a 'cage' that is opened with light to release trapped antigens at a specific place and time.

Biology: General Biology: Marine Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography
Published

Loss of oxygen in lakes and oceans a major threat to ecosystems, society, and planet      (via sciencedaily.com)     Original source 

Oxygen is a fundamental requirement of life, and the loss of oxygen in water, referred to as aquatic deoxygenation, is a threat to life at all levels. In fact, researchers describe how ongoing deoxygenation presents a major threat to the stability of the planet as a whole.

Biology: Botany Biology: General Ecology: Animals Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Study examines urban forests across the United States      (via sciencedaily.com)     Original source 

Tree-planting campaigns have been underway in the United States, especially in cities, as part of climate mitigation efforts given the many environmental benefits of urban forests. But a new study finds that some areas within urban forests in the U.S., may be more capable than trees growing around city home lawns in adapting to a warmer climate.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

New ways to study spinal cord malformations in embryos      (via sciencedaily.com)     Original source 

Scientists have successfully created mechanical force sensors directly in the developing brains and spinal cords of chicken embryos, which they hope will improve understanding and prevention of birth malformations such as spina bifida.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

A better way to make RNA drugs      (via sciencedaily.com)     Original source 

RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality      (via sciencedaily.com)     Original source 

Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Opening the right doors: 'Jumping gene' control mechanisms revealed      (via sciencedaily.com)     Original source 

International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.

Biology: Biochemistry Biology: Botany Biology: Microbiology Ecology: Animals Ecology: Endangered Species Ecology: Invasive Species
Published

Wild plants and crops don't make great neighbors, research finds      (via sciencedaily.com)     Original source 

Native plants and non-native crops do not fare well in proximity to one another, attracting pests that spread diseases in both directions, according to two new studies.

Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin      (via sciencedaily.com)     Original source 

An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.