Showing 20 articles starting at article 541

< Previous 20 articles        Next 20 articles >

Categories: Biology: Evolutionary, Biology: Molecular

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

How obesity dismantles our mitochondria      (via sciencedaily.com)     Original source 

Researchers found that when mice were fed a high-fat diet, mitochondria within their fat cells broke apart and were less able to burn fat, leading to weight gain. They also found they could reverse the effect by targeting a single gene, suggesting a new treatment strategy for obesity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Sea Life
Published

Researchers map genome for cats, dolphins, birds, and dozens of other animals      (via sciencedaily.com)     Original source 

Researchers mapped genetic blueprints for 51 species including cats, dolphins, kangaroos, penguins, sharks, and turtles, a discovery that deepens our understanding of evolution and the links between humans and animals. The researchers developed novel algorithms and computer software that cut the sequencing time from months -- or decades in the case of the human genome -- to a matter of days.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Trees
Published

Soap bark discovery offers a sustainability booster for the global vaccine market      (via sciencedaily.com)     Original source 

A valuable molecule sourced from the soapbark tree and used as a key ingredient in vaccines, has been replicated in an alternative plant host for the first time, opening unprecedented opportunities for the vaccine industry.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems
Published

Use it or lose it: How seagrasses conquered the sea      (via sciencedaily.com)     Original source 

Seagrasses provide the foundation of one of the most highly biodiverse, yet vulnerable, coastal marine ecosystems globally. They arose in three independent lineages from their freshwater ancestors some 100 million years ago and are the only fully submerged, marine flowering plants. Moving to such a radically different environment is a rare evolutionary event and definitely not easy. How did they do it? New reference quality genomes provide important clues with relevance to their conservation and biotechnological application.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How HIV smuggles its genetic material into the cell nucleus      (via sciencedaily.com)     Original source 

Around one million individuals worldwide become infected with HIV, the virus that causes AIDS, each year. To replicate and spread the infection, the virus must smuggle its genetic material into the cell nucleus and integrate it into a chromosome. Research teams have now discovered that its capsid has evolved into a molecular transporter. As such, it can directly breach a crucial barrier, which normally protects the cell nucleus against viral invaders. This way of smuggling keeps the viral genome invisible to anti-viral sensors in the cytoplasm.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

The underground network: Decoding the dynamics of plant-fungal symbiosis      (via sciencedaily.com)     Original source 

The intricate dance of nature often unfolds in mysterious ways, hidden from the naked eye. At the heart of this enigmatic tango lies a vital partnership: the symbiosis between plants and a type of fungi known as arbuscular mycorrhizal (AM) fungi. New groundbreaking research delves into this partnership, revealing key insights that deepen our understanding of plant-AM fungi interactions and could lead to advances in sustainable agriculture.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Researchers pinpoint most likely source of HIV rebound infection      (via sciencedaily.com)     Original source 

Antiretroviral therapy (ART) does an excellent job at suppressing HIV to undetectable levels in the blood. However, small amounts of latent virus hide throughout the body, and when treatment is stopped, it opens the door for the virus to rebound. Researchers identified which tissues SIV, the nonhuman primate version of HIV, reemerges from first, just seven days after ART is stopped.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How does HIV get into the cell's cenetr to kickstart infection?      (via sciencedaily.com)     Original source 

UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.

Archaeology: General Biology: Biochemistry Biology: Evolutionary Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Ancient brown bear genomes sheds light on Ice Age losses and survival      (via sciencedaily.com)     Original source 

The brown bear is one of the largest living terrestrial carnivores, and is widely distributed across the Northern Hemisphere. Unlike many other large carnivores that went extinct at the end of the last Ice Age (cave bear, sabretoothed cats, cave hyena), the brown bear is one of the lucky survivors that made it through to the present. The question has puzzled biologists for close to a century -- how was this so?

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Anthropology: General Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Paleontology: Fossils
Published

Complex green organisms emerged a billion years ago      (via sciencedaily.com)     Original source 

Of all the organisms that photosynthesize, land plants have the most complex form. How did this morphology emerge? A team of scientists has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Tiny worm, giant leap: Discovery of highly specific fatty acid attachment to proteins      (via sciencedaily.com)     Original source 

In a world where the intricacies of molecular biology often seem as vast and mysterious as the cosmos, a new groundbreaking study delves into the microscopic universe of proteins, unveiling a fascinating aspect of their existence. This revelation could hold profound implications for the understanding and treatment of a myriad of human diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Geochemistry
Published

Don't overeat: How archaea toggle the nitrogen-uptake switch      (via sciencedaily.com)     Original source 

By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.