Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Environmental: Biodiversity

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

New ways to study spinal cord malformations in embryos      (via sciencedaily.com)     Original source 

Scientists have successfully created mechanical force sensors directly in the developing brains and spinal cords of chicken embryos, which they hope will improve understanding and prevention of birth malformations such as spina bifida.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

A better way to make RNA drugs      (via sciencedaily.com)     Original source 

RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.

Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

Unprecedented warming threatens Earth's lakes and their ecosystems      (via sciencedaily.com)     Original source 

Lakes, with their rich biodiversity and important ecological services, face a concerning trend: rapidly increasing temperatures. A recent study by limnologists and climate modelers reveals that if current anthropogenic warming continues until the end of this century, lakes worldwide will likely experience pervasive and unprecedented surface and subsurface warming, far outside the range of what they have encountered before.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality      (via sciencedaily.com)     Original source 

Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Opening the right doors: 'Jumping gene' control mechanisms revealed      (via sciencedaily.com)     Original source 

International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.

Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin      (via sciencedaily.com)     Original source 

An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New one-step method to make multiple edits to a cell's genome      (via sciencedaily.com)     Original source 

A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.

Biology: Biochemistry Biology: General Biology: Microbiology Ecology: General Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: Water Geoscience: Geochemistry
Published

Study reveals environmental impact of artificial sweeteners      (via sciencedaily.com)     Original source 

A recently published study demonstrates how sucralose affects the behavior of cyanobacteria -- an aquatic photosynthetic bacteria -- and diatoms, microscopic algae that account for more than 30% of the primary food production in the marine food chain.

Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water
Published

Restored oyster sanctuaries host more marine life      (via sciencedaily.com)     Original source 

Oysters sanctuaries in Chesapeake Bay are working for more than just oysters. Compared to nearby harvest areas, sanctuaries contain more abundant populations of oysters and other animal life--and the presence of two common parasites isn't preventing that.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

New bio-based tool quickly detects concerning coronavirus variants      (via sciencedaily.com)     Original source 

Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins      (via sciencedaily.com)     Original source 

Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.

Environmental: Biodiversity Geoscience: Environmental Issues
Published

Why the U.S. food system needs agroecology      (via sciencedaily.com)     Original source 

Agroecology -- a science, practice, and movement which seeks social, political, economic, and environmental sustainability in the global food system -- is gaining momentum in the U.S., according to a new article.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Never-before-seen view of gene transcription captured      (via sciencedaily.com)     Original source 

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.