Showing 20 articles starting at article 161

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Environmental: Biodiversity

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Unlocking the world of bacteria      (via sciencedaily.com)     Original source 

Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The on-and-off affair in DNA      (via sciencedaily.com)     Original source 

Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.

Biology: Marine Ecology: Extinction Ecology: General Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science
Published

Future risk of coral bleaching set to intensify globally      (via sciencedaily.com)     Original source 

Researchers have projected future marine heatwaves will cause coral reefs to be at severe risk of bleaching for longer periods than previously seen.

Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Paleontology: Climate
Published

Ocean's loss of oxygen caused massive Jurassic extinction: Could it happen again?      (via sciencedaily.com)     Original source 

Researchers have found a chemical clue in Italian limestone that explains a mass extinction of marine life in the Early Jurassic period, 183 million years ago. Volcanic activity pumped out CO2, warming oceans and lowering their oxygen levels. The findings may foretell the impact climate change and oxygen depletion might have on today's oceans.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Slipping a note to a neighbor: The cellular way      (via sciencedaily.com)     Original source 

Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Engineering: Nanotechnology
Published

Revealing the dynamic choreography inside multilayer vesicles      (via sciencedaily.com)     Original source 

Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zebrafish reveal how bioelectricity shapes muscle development      (via sciencedaily.com)     Original source 

New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of vast sex differences in cellular activity has major implications for disease treatment      (via sciencedaily.com)     Original source 

The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.

Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Myths about intermittent fasting, debunked      (via sciencedaily.com)     Original source 

Research shows that the increasingly popular weight-loss strategy is safe. Intermittent fasting has become an increasingly popular way to lose weight without counting calories. And a large body of research has shown it s safe. Still, several myths about fasting have gained traction.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Removal of excess chloride ions by plants when subjected to salt stress      (via sciencedaily.com)     Original source 

Researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance. A research team has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cells boost gene expression      (via sciencedaily.com)     Original source 

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.

Biology: Biochemistry Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Geoscience: Environmental Issues
Published

Boosting biodiversity without hurting local economies      (via sciencedaily.com)     Original source 

Protected areas, like nature reserves, can conserve biodiversity without harming local economic growth, countering a common belief that conservation restricts development. A new study outlines what is needed for conservation to benefit both nature and people.

Ecology: General Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

When in drought: Researchers map which parts of the Amazon are most vulnerable to climate change      (via sciencedaily.com)     Original source 

Some areas of the Amazon rainforest are more resilient to drought than others, new research shows. But if not managed carefully, we could 'threaten the integrity of the whole system,' researchers say.

Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

How targeted nutrients can fight cancer      (via sciencedaily.com)     Original source 

An international research team has discovered a new way to effectively treat cancer, by using nutrients to reactivate suppressed metabolic pathways in cancer cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Where to put head and tail?      (via sciencedaily.com)     Original source 

Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

How the ketogenic diet improves healthspan and memory in aging mice      (via sciencedaily.com)     Original source 

The ketogenic diet has its fanatics and detractors among dieters, but either way, the diet has a scientifically documented impact on memory in mice. While uncovering how the high fat, low carbohydrate diet boosts memory in older mice, scientists identified a new molecular signaling pathway that improves synapse function and helps explain the diet's benefit on brain health and aging.

Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Climate change: rising temperatures may impact groundwater quality      (via sciencedaily.com)     Original source 

As the world's largest unfrozen freshwater resource, groundwater is crucial for life on Earth. Researchers have investigated how global warming is affecting groundwater temperatures and what that means for humanity and the environment. Their study indicates that by 2100, more than 75 million people are likely to be living in regions where the groundwater temperature exceeds the highest threshold set for drinking water by any country.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The genetic 'switches' of bone growth      (via sciencedaily.com)     Original source 

In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.

Biology: Marine Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

A conservation market could incentivize global ocean protection      (via sciencedaily.com)     Original source 

Thirty-by-thirty: protect 30% of the planet by 2030. While conservation is popular in principle, the costs of actually enacting it often stall even the most earnest efforts. Researchers have now proposed a market-based approach to achieving the 30x30 targets in the ocean.