Showing 20 articles starting at article 941
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Space: The Solar System
Published Flaring star could be down to young planet's disc inferno



New simulations offer new explanation for star's 85-year flare. In this scenario, a young giant planet is burning up very close to its star, suggesting solar systems may have hosted many of such planets that have since 'evaporated'.
Published Using photosynthesis for Martian occupation -- while making space travel more sustainable



Researchers are working on sustainable technology to harvest solar power in space -- which could supplement life support systems on the Moon and Mars.
Published 'Hot Jupiters' may not be orbiting alone



Astronomers challenge longstanding beliefs about the isolation of 'hot Jupiters' and proposes a new mechanism for understanding the exoplanets' evolution.
Published When water temperatures change, the molecular motors of cephalopods do too



Working with live squid hatchlings, scientists find the animals can tune their proteome on the fly in response to changes in ocean temperature via the unique process of RNA recoding. The findings inspire new questions about basic protein function.
Published Study unravels the mysteries of actin filament polarity



An electron microscopy study revealed key details of actin filaments, which are essential structural elements of cells and muscles.
Published Octopuses rewire their brains to adapt to seasonal temperature shifts



Octopuses don't thermoregulate, so their powerful brains are exposed to -- and potentially threatened by -- changes in temperature. Researchers report that two-spot octopuses adapt to seasonal temperature shifts by producing different neural proteins under warm versus cool conditions. The octopuses achieve this by editing their RNA, the messenger molecule between DNA and proteins. This rewiring likely protects their brains, and the researchers suspect that this unusual strategy is used widely amongst octopuses and squid.
Published Long missions, frequent travel take a toll on astronauts' brains



A study looking at how the human brain reacts to traveling outside Earth's gravity suggests frequent flyers should wait three years after longer missions to allow the physiological changes in their brains to reset.
Published New study identifies mechanism driving the sun's fast wind



Researchers used data from NASA's Parker Solar Probe to explain how the solar wind is capable of surpassing speeds of 1 million miles per hour. They discovered that the energy released from the magnetic field near the sun's surface is powerful enough to drive the fast solar wind, which is made up of ionized particles -- called plasma -- that flow outward from the sun.
Published A compound from fruit flies could lead to new antibiotics



Research shows that the natural peptide, called drosocin, protects fruit flies from bacterial infections by binding to ribosomes in bacteria. Once bound, drosocin prevents the ribosome from making new proteins.
Published Proposed design could double the efficiency of lightweight solar cells for space-based applications



When it comes to supplying energy for space exploration and settlements, commonly available solar cells made of silicon or gallium arsenide are still too heavy to be feasibly transported by rocket. To address this challenge, a wide variety of lightweight alternatives are being explored, including solar cells made of a thin layer of molybdenum selenide, which fall into the broader category of 2D transition metal dichalcogenide (2D TMDC) solar cells. Researchers propose a device design that can take the efficiencies of 2D TMDC devices from 5%, as has already been demonstrated, to 12%.
Published Muscle fibers: An unexpected organization revealed



Researchers have just made the unexpected discovery of a novel organization of muscle fibers in Parophidion vassali, a fish that lives in the Mediterranean Sea and, like many fish, uses specialized muscles to produce sounds. This is an important discovery that could well change our understanding of muscle contraction.
Published Webb Space Telescope detects universe's most distant complex organic molecules



Researchers have detected complex organic molecules in a galaxy more than 12 billion light-years away from Earth -- the most distant galaxy in which these molecules are now known to exist. Thanks to the capabilities of the recently launched James Webb Space Telescope and careful analyses from the research team, a new study lends critical insight into the complex chemical interactions that occur in the first galaxies in the early universe.
Published Supercomputer simulations provide a better picture of the Sun's magnetic field



The new findings challenge the conventional understanding of solar dynamics and could improve predictions of solar weather in the future.
Published New class of antibiotics to fight resistant bacteria



Health professionals are in urgent need of new antibiotics to tackle resistant bacteria. Researchers have now modified the chemical structure of naturally occurring peptides to develop antimicrobial molecules that bind to novel targets in the bacteria's metabolism.
Published Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants



Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.
Published DNA damage repaired by antioxidant enzymes



In crisis, the nucleus calls antioxidant enzymes to the rescue. The nucleus being metabolically active is a profound paradigm shift with implications for cancer research.
Published Engineers report low-cost human biomarker sensor designs



Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.
Published A protein mines, sorts rare earths better than humans, paving way for green tech



Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.
Published Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production



According to new research, the amount of oxygen in one of 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. The new study identifies how a proton pumping enzyme (known as VHA) aids in global oxygen production and carbon fixation from phytoplankton.
Published How the flu virus hacks our cells



Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.