Showing 20 articles starting at article 981
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Space: The Solar System
Published Designing synthetic receptors for precise cell control



Scientists have developed a groundbreaking new technique for engineering biosensors that respond sensitively to specific biomolecules, enhancing cell migration and targeting in cancer treatment. The findings could lead to more precise control over cellular processes for a wide range of therapeutic applications.
Published Under control to the very end -- how our cells kill themselves



Every day, millions of cells die in our body. Other than generally assumed, cells do not simply burst at the end of their lives but rather, a specific protein serves as a breaking point for cell membrane rupture. Researchers have now been able to elucidate the exact mechanism at the atomic level.
Published A guide through the genome



Plants show enormous variety in traits relevant to breeding, such as plant height, yield and resistance to pests. One of the greatest challenges in modern plant research is to identify the differences in genetic information that are responsible for this variation.
Published How plants use sugar to produce roots



Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. Botanists have demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to the research team leader.
Published An X-ray look at the heart of powerful quasars



Researchers have observed the X-ray emission of the most luminous quasar seen in the last 9 billion years of cosmic history, known as SMSS J114447.77-430859.3, or J1144 for short. The new perspective sheds light on the inner workings of quasars and how they interact with their environment.
Published Synthetic biology: proteins set vesicles in motion



Biophysicists have designed a new cell-like transport system that represents an important milestone on the road to artificial cells.
Published Cancer cells use a new fuel in absence of sugar



Researchers have discovered a new nutrient source that pancreatic cancer cells use to grow. The molecule, uridine, offers insight into both biochemical processes and possible therapeutic pathways. The findings show that cancer cells can adapt when they don't have access to glucose.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published Scales or feathers? It all comes down to a few genes



Scales, spines, feathers and hair are examples of vertebrate skin appendages, which constitute a remarkably diverse group of micro-organs. Despite their natural multitude of forms, these appendages share early developmental processes at the embryonic stage. Researchers have discovered how to permanently transform the scales that normally cover the feet of chickens into feathers, by specifically modifying the expression of certain genes.
Published A channel involved in pain sensation can also suppress it



Pain is good. It's the body's way to keep an animal from harming itself or repeating a dangerous mistake. But sometimes the debilitating sensation can get in the way. So evolution has devised ways to tamp that response down under certain circumstances.
Published NASA's Spitzer, TESS find potentially volcano-covered Earth-size world



Astronomers have discovered an Earth-size exoplanet, or world beyond our solar system, that may be carpeted with volcanoes. Called LP 791-18 d, the planet could undergo volcanic outbursts as often as Jupiter's moon Io, the most volcanically active body in our solar system.
Published Researchers reveal DNA repair mechanism



A new study adds to an emerging, radically new picture of how bacterial cells continually repair faulty sections of their DNA.
Published How superbug A. baumannii survives metal stress and resists antibiotics



The deadly hospital pathogen Acinetobacter baumannii can live for a year on a hospital wall without food and water. Then, when it infects a vulnerable patient, it resists antibiotics as well as the body's built-in infection-fighting response. The World Health Organization (WHO) recognizes it as one of the three top pathogens in critical need of new antibiotic therapies. Now, an international team, led by Macquarie University researchers Dr. Ram Maharjan and Associate Professor Amy Cain, have discovered how the superbug can survive harsh environments and then rebound, causing deadly infections. They have found a single protein that acts as a master regulator. When the protein is damaged, the bug loses its superpowers allowing it to be controlled, in a lab setting. The research is published this month in Nucleic Acids Research.
Published Phage structure captured, to benefit biotech applications



Researchers have mapped out what a commonly-used form of phage looks like, which will help design better uses in future.
Published Astronomers observe the first radiation belt seen outside of our solar system



Astronomers have described the first radiation belt observed outside our solar system, using a coordinated array of 39 radio dishes from Hawaii to Germany to obtain high-resolution images. The images of persistent, intense radio emissions from an ultracool dwarf reveal the presence of a cloud of high-energy electrons trapped in the object's powerful magnetic field, forming a double-lobed structure analogous to radio images of Jupiter's radiation belts.
Published New study puts a definitive age on Saturn's rings -- they're really young



Physicists measured the flux of interplanetary dust around Saturn. The researchers concluded that the planet's rings formed less than 400 million years ago, making them much younger than Saturn itself.
Published Astronomers reveal the largest cosmic explosion ever seen



Astronomers have uncovered the largest cosmic explosion ever witnessed. The explosion is more than ten times brighter than any known supernova and three times brighter than the brightest tidal disruption event, where a star falls into a supermassive black hole.
Published A look inside stem cells helps create personalized regenerative medicine



Researchers have examined a specific type of stem cell with an intracellular toolkit to determine which cells are most likely to create effective cell therapies.
Published Ancestral mitoviruses discovered in mycorrhizal fungi



A new group of mitochondrial viruses confined to the arbuscular mycorrhizal fungi Glomeromycotina may represent an ancestral lineage of mitoviruses.
Published Astronomers find no young binary stars near Milky Way's black hole



Scientists analyzed over a decade's worth of data about 16 young supermassive stars orbiting the supermassive black hole at the center of the Milky Way galaxy. Supermassive stars typically are formed in pairs, but the new study found that all 16 of the stars were singletons. The findings support a scenario in which the supermassive black hole drives nearby stars to either merge or be disrupted, with one of the pair being ejected from the system.