Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Environmental: Wildfires

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Slipping a note to a neighbor: The cellular way      (via sciencedaily.com)     Original source 

Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Engineering: Nanotechnology
Published

Revealing the dynamic choreography inside multilayer vesicles      (via sciencedaily.com)     Original source 

Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zebrafish reveal how bioelectricity shapes muscle development      (via sciencedaily.com)     Original source 

New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.

Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of vast sex differences in cellular activity has major implications for disease treatment      (via sciencedaily.com)     Original source 

The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.

Chemistry: Biochemistry Environmental: Wildfires
Published

Wildfires increasingly threaten oil and gas drill sites, compounding potential health risks      (via sciencedaily.com)     Original source 

More than 100,000 oil and gas wells across the western U.S. are in areas burned by wildfires in recent decades, a new study has found, and some 3 million people live next to wells that in the future could be in the path of fires worsened by climate change.

Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Myths about intermittent fasting, debunked      (via sciencedaily.com)     Original source 

Research shows that the increasingly popular weight-loss strategy is safe. Intermittent fasting has become an increasingly popular way to lose weight without counting calories. And a large body of research has shown it s safe. Still, several myths about fasting have gained traction.

Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: General Environmental: Wildfires
Published

Fuel treatments reduce future wildfire severity      (via sciencedaily.com)     Original source 

There is a common belief that prescribed burning, thinning trees, and clearing underbrush reduce risks of the severity of future fires. But is that true? A new project analyzing 40 studies where wildfire burned into different vegetation treatments, spanning 11 western states. Researchers found overwhelming evidence that in seasonally dry mixed conifer forests in the western U.S., reducing surface and ladder fuels and tree density through thinning, coupled with prescribed burning or pile burning, could reduce future wildfire severity by more than 60% relative to untreated areas.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Removal of excess chloride ions by plants when subjected to salt stress      (via sciencedaily.com)     Original source 

Researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance. A research team has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cells boost gene expression      (via sciencedaily.com)     Original source 

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.

Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

How targeted nutrients can fight cancer      (via sciencedaily.com)     Original source 

An international research team has discovered a new way to effectively treat cancer, by using nutrients to reactivate suppressed metabolic pathways in cancer cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Where to put head and tail?      (via sciencedaily.com)     Original source 

Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

How the ketogenic diet improves healthspan and memory in aging mice      (via sciencedaily.com)     Original source 

The ketogenic diet has its fanatics and detractors among dieters, but either way, the diet has a scientifically documented impact on memory in mice. While uncovering how the high fat, low carbohydrate diet boosts memory in older mice, scientists identified a new molecular signaling pathway that improves synapse function and helps explain the diet's benefit on brain health and aging.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The genetic 'switches' of bone growth      (via sciencedaily.com)     Original source 

In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.

Ecology: Trees Environmental: Ecosystems Environmental: Wildfires Geoscience: Geography
Published

New way to spot beetle-killed spruce can help forest, wildfire managers      (via sciencedaily.com)     Original source 

A new machine-learning system can automatically produce detailed maps from satellite data to show locations of likely beetle-killed spruce trees in Alaska, even in forests of low and moderate infestation where identification is otherwise difficult. The automated process can help forestry and wildfire managers in their decisions. That's critical as the beetle infestation spreads.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology
Published

The gender gap in life expectancy: Are eggs and sperm partly responsible?      (via sciencedaily.com)     Original source 

Researchers have found that germ cells, which develop into eggs and sperm, drive sex-dependent differences in lifespan in vertebrates. Female and male germ cells increase and reduce lifespan, respectively. These effects are controlled via estrogen and growth factor hormones in females and vitamin D in males. Vitamin D supplementation extends lifespan in both males and females. The results clarify the link between reproduction and aging and show that vitamin D may improve longevity in vertebrates.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Scientists engineer yellow-seeded camelina with high oil output      (via sciencedaily.com)     Original source 

Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Virus-like nanoparticles control the multicellular organization and reproduction of host bacteria      (via sciencedaily.com)     Original source 

Researchers have discovered that virus-like nanoparticles can promote the multicellular organization and reproduction of host bacteria. These particles, which are evolutionarily related to phages (viruses that infect bacteria), contain an enzyme that helps shape the multicellular architecture and ultimately enhances morphological differentiation.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Energy: Alternative Fuels Energy: Technology Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Algae offer real potential as a renewable electricity source      (via sciencedaily.com)     Original source 

The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Protein study could help researchers develop new antibiotics      (via sciencedaily.com)     Original source 

A team has found a way to make the bacterial enzyme histidine kinase water-soluble, which could make it possible to rapidly screen potential antibiotics that might interfere with its functions.