Showing 20 articles starting at article 821

< Previous 20 articles        Next 20 articles >

Categories: Biology: Molecular, Environmental: Water

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular Chemistry: Biochemistry
Published

3D in vitro human atherosclerosis model for high-throughput drug screening      (via sciencedaily.com)     Original source 

A groundbreaking 3D, three-layer nanomatrix vascular sheet that possesses multiple features of atherosclerosis has been applied for developing a high-throughput functional assay of drug candidates to treat this disease, researchers report.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging      (via sciencedaily.com)     Original source 

Researchers have engineered one of the world's first yeast cells able to harness energy from light, expanding our understanding of the evolution of this trait -- and paving the way for advancements in biofuel production and cellular aging.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Capturing greenhouse gases with the help of light      (via sciencedaily.com)     Original source 

Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Spying on a shape-shifting protein      (via sciencedaily.com)     Original source 

Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Molecular Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology
Published

Study uncovers potential origins of life in ancient hot springs      (via sciencedaily.com)     Original source 

A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Biology: Molecular Paleontology: Fossils Paleontology: General
Published

Even the oldest eukaryote fossils show dazzling diversity and complexity      (via sciencedaily.com)     Original source 

The sun has just set on a quiet mudflat in Australia's Northern Territory; it'll set again in another 19 hours. A young moon looms large over the desolate landscape. No animals scurry in the waning light. No leaves rustle in the breeze. No lichens encrust the exposed rock. The only hint of life is some scum in a few puddles and ponds. And among it lives a diverse microbial community of our ancient ancestors.

Environmental: Biodiversity Environmental: Ecosystems Environmental: Water Geoscience: Geography Geoscience: Oceanography
Published

Beaches and dunes globally squeezed by roads and buildings      (via sciencedaily.com)     Original source 

Beaches and dunes globally squeezed by roads and buildings. Beaches and dunes are becoming increasingly trapped between rising sea levels and infrastructure. Researchers found that today, when dropped on a random beach anywhere in the world, you only need to walk 390 meters (on average) to find the nearest road or building. And while that short walking distance may seem convenient if you want a day at the beach, it's bad news for our protection against rising sea levels, drinking water supplies and biodiversity.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Lab-grown retinas explain why people see colors dogs can't      (via sciencedaily.com)     Original source 

With human retinas grown in a petri dish, researchers discovered how an offshoot of vitamin A generates the specialized cells that enable people to see millions of colors, an ability that dogs, cats, and other mammals do not possess. The findings increase understanding of color blindness, age-related vision loss, and other diseases linked to photoreceptor cells. They also demonstrate how genes instruct the human retina to make specific color-sensing cells, a process scientists thought was controlled by thyroid hormones.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: Ecosystems Environmental: Water
Published

Highly durable, nonnoble metal electrodes for hydrogen production from seawater      (via sciencedaily.com)     Original source 

The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Protein complex discovered to control DNA repair      (via sciencedaily.com)     Original source 

The repair of damage to genetic material (DNA) in the human body is carried out by highly efficient mechanisms that have not yet been fully researched. A scientific team has now discovered a previously unrecognized control point for these processes. This could lead to a new approach for the development of cancer therapies aimed at inhibiting the repair of damaged cancer cells.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Molecular Environmental: Water Geoscience: Geochemistry Geoscience: Geography
Published

Toxic algae blooms: Study assesses potential health hazards to humans      (via sciencedaily.com)     Original source 

Water samples from 20 sites were tested using a panel of immortalized human cell lines corresponding to the liver, kidney and brain to measure cytotoxicity. Results show that each control toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. Known toxins were seen only during blooms. Because cell toxicity was seen in the absence of blooms, it suggests that there might be either emergent toxins or a combination of toxins present at those times. Findings suggest that other toxins with the potential to be harmful to human health may be present in the lagoon.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A new type of plant metalloreductase maintains root growth under low phosphorus      (via sciencedaily.com)     Original source 

Phosphorus is essential for undisturbed plant growth and development. However, in many soils, phosphorus is only poorly available. One mechanism used by plants to increase phosphorus availability is the release of malate, an organic acid, which can form complexes with iron or aluminium in the soil, thereby liberating sorbed phosphate. However, this response can also result in iron overaccumulation, which can inhibit root growth.

Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

PFAS flow equally between Arctic Ocean and Atlantic Ocean      (via sciencedaily.com)     Original source 

The frigid Arctic Ocean is far removed from the places most people live, but even so, 'forever chemicals' reach this remote landscape. Now, research suggests that per- and polyfluoroalkyl substances (PFAS) won't stay there indefinitely. Instead, they are transported in a feedback loop, with the Arctic Ocean potentially exporting as many PFAS to the North Atlantic Ocean as it receives, circulating the compounds around the world.

Environmental: Biodiversity Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography
Published

Only 18% of the global land area that is needed for human well-being and biodiversity is currently protected      (via sciencedaily.com)     Original source 

An international group of researchers finds that conserving about half of global land area could maintain nearly all of nature's contributions to people and still meet biodiversity targets for tens of thousands of species. But the same priority areas are at risk of conflict with human development with only 18% of that land area protected.

Biology: Biochemistry Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: Water Geoscience: Environmental Issues Geoscience: Severe Weather
Published

'Carbon vault' peat suffers greatly from drought      (via sciencedaily.com)     Original source 

Peatlands are affected more by drought than expected. This is concerning, as these ecosystems are an important ally in the fight against climate change. Following long periods of drought, peat is able to absorb little to no extra carbon (CO2). Increasing biodiversity also does little to make peat more drought-resilient.

Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography
Published

Climate change behind sharp drop in snowpack since 1980s      (via sciencedaily.com)     Original source 

A new study confirms that spring snowpacks across the Northern Hemisphere have shrunk significantly over the past 40 years due to human-driven climate change, putting hundreds of millions of people worldwide at risk of a water crisis. The Southwestern and Northeastern U.S. saw among the steepest declines, with more than 10% of the spring snowpack lost per decade, which the researchers expect will accelerate with further warming. Many heavily populated snow-dependent watersheds are dangerously near what they call a 'snow-loss cliff,' wherein once average winter temperatures exceed 17 degrees Fahrenheit, snow loss accelerates even with only modest increases in temperature.

Biology: Marine Biology: Zoology Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Acidity of Antarctic waters could double by century's end, threatening biodiversity      (via sciencedaily.com)     Original source 

Without drastically reducing global emissions, the Antarctic Ocean could become too acidic for hundreds of species living there, many already endangered by rising temperatures and sea ice loss.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Smart skin bacteria are able to secrete and produce molecules to treat acne      (via sciencedaily.com)     Original source 

An experimental study has shown that a type of skin bacterium can efficiently be engineered to produce a protein to regulate sebum production. This application could treat acne without compromising the homeostasis of the entire skin microbiome.