Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Biology: Molecular
Published Zebrafish use surprising strategy to regrow spinal cord



A new study maps out a detailed atlas of all the cells involved in regenerating the zebrafish spinal cord. In an unexpected finding, the researchers showed that survival and adaptability of the severed neurons themselves is required for full spinal cord regeneration. Surprisingly, the study showed that stem cells capable of forming new neurons play a complementary role but don t lead the process.
Published Surprise finding in study of environmental bacteria could advance search for better antibiotics



Researchers studying bacteria from freshwater lakes and soil say they have determined a protein's essential role in maintaining the germ's shape. Because the integrity of a bacterial cell's 'envelope' or enclosure is key to its survival, the finding could advance the search for new and better antibiotics.
Published Beige fat cells with a 'Sisyphus mechanism'



A new class of fat cells makes people healthier. The cells consume energy and produce heat through seemingly pointless biochemical reactions.
Published New mechanism of action kills cancer cells



Conventional cancer drugs work by triggering apoptosis, that is programmed cell death, in tumor cells. However, tumor cells have the ability to develop strategies to escape apoptosis, rendering the drugs ineffective. A research team now describes a new mechanism of action that kills cancer cells through ferroptosis.
Published Great Scott! Stonehenge's Altar Stone origins reveal advanced ancient Britain



New research has revealed Stonehenge's monumental six-ton Altar Stone, long believed to originate from Wales, actually hails from Scotland.
Published A ketogenic diet could improve the response to pancreatic cancer therapy



Scientists have discovered a way to get rid of pancreatic cancer in mice by putting them on a high fat, or ketogenic, diet and giving them cancer therapy.
Published Exciting advance in stem cell therapy



A new technique for mechanically manipulating stem cells could lead to new stem cell treatments, which have yet to fulfill their therapeutic potential.
Published New interpretation of runic inscription reveals pricing in Viking age



A new interpretation of the runic inscription on the Forsa Ring (Forsaringen in Swedish), provides fresh insights into the Viking Age monetary system and represents the oldest documented value record in Scandinavia. The inscription describes how the Vikings handled fines in a flexible and practical manner.
Published Surprising insight into cancer comes from unique plant species that find different solutions to evolutionary challenges



A study has shown that different plant species tackle the same evolutionary hurdle in different ways, and the findings may give insight into aggressive forms of cancer.
Published House call: A new study rethinks early Christian landmark



Since its discovery by modern researchers a century ago, an ancient structure known as the 'Christian building' has become widely considered the cornerstone of early Christian architecture. Constructed around 232 C.E. in the ancient city of Dura-Europos, a Roman garrison town in what is now eastern Syria, the building is the only example of a 'house church,' or domus ecclesiae, a domestic space that was renovated for worship by Christians at a time when the open practice of their faith is thought to have made them subject to persecution.
Published Rewriting the evolutionary history of critical components of the nervous system



A new study has rewritten the conventionally understood evolutionary history of certain ion channels -- proteins critical for electrical signaling in the nervous system. The study shows that the Shaker family of ion channels were present in microscopic single cell organisms well before the common ancestor of all animals and thus before the origin of the nervous system.
Published Starvation and adhesion drive formation of keratinocyte patterns in skin



Cell-cell adhesion-induced patterning in keratinocytes can be explained by just starvation and strong adhesion researchers find.
Published Study reveals oleoyl-ACP-hydrolase underpins lethal respiratory viral disease



Respiratory infections can be severe, even deadly, in some individuals, but not in others. Scientists have gained new understanding of why this is the case by uncovering an early molecular driver that underpins fatal disease. Oleoyl-ACP-hydrolase (OLAH) is an enzyme involved in fatty acid metabolism. A study shows that OLAH drives severe disease outcomes.
Published Researchers ID body's 'quality control' regulator for protein folding



Anyone who's tried to neatly gather a fitted sheet can tell you: folding is hard. Get it wrong with your laundry and the result can be a crumpled, wrinkled mess of fabric, but when folding fails among the approximately 7,000 proteins with an origami-like complexity that regulate essential cellular functions, the result can lead to one of a multitude of serious diseases ranging from emphysema and cystic fibrosis to Alzheimer's disease. Fortunately, our bodies have a quality-control system that identifies misfolded proteins and marks them either for additional folding work or destruction, but how, exactly, this quality-control process functions is not entirely known. Researchers have now made a major leap forward in our understanding of how this quality-control system works by discovering the 'hot spot' where all the action takes place.
Published Pre-surgical antibody treatment might prevent heart transplant rejection



Anti-rejection regimens currently in use are broad immunosuppressive agents that make patients susceptible to infections. By using specific antibodies, it may be possible to just block the inflammation that leads to rejection but leave anti-microbial immunity intact.
Published How mortal filaments' self-assemble and maintain order: Align or die



A previously unknown mechanism of active matter self-organization essential for bacterial cell division follows the motto 'dying to align': Misaligned filaments 'die' spontaneously to form a ring structure at the center of the dividing cell. The work could find applications in developing synthetic self-healing materials.
Published Taking a 'one in a million' shot to tackle dopamine-linked brain disorders



With the help of a tiny, transparent worm called Caenorhabditis elegans, researchers have identified novel players in dopamine signaling by taking advantage of a powerful platform generated via the Million Mutation Project (MMP) for the rapid identification of mutant genes based on their functional impact. They can seek insights from simpler organisms whose genes bear striking similarity to those found in humans and where opportunities for genetic insights to disease can be pursued more efficiently and inexpensively.
Published An appetizer can stimulate immune cells' appetite, a boon for cancer treatments



The body has a veritable army constantly on guard to keep us safe from microscopic threats from infections to cancer. Chief among this force is the macrophage, a white blood cell that surveils tissues and consumes pathogens, debris, dead cells, and cancer. Macrophages have a delicate task. It's crucial that they ignore healthy cells while on patrol, otherwise they could trigger an autoimmune response while performing their duties.
Published A new mechanism for shaping animal tissues



A key question that remains in biology and biophysics is how three-dimensional tissue shapes emerge during animal development. Research teams have now found a mechanism by which tissues can be 'programmed' to transition from a flat state to a three-dimensional shape.
Published Largest protein yet discovered builds algal toxins



While seeking to unravel how marine algae create their chemically complex toxins, scientists have discovered the largest protein yet identified in biology. Uncovering the biological machinery the algae evolved to make its intricate toxin also revealed previously unknown strategies for assembling chemicals, which could unlock the development of new medicines and materials.