Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Paleontology: Dinosaurs
Published Soap bark discovery offers a sustainability booster for the global vaccine market



A valuable molecule sourced from the soapbark tree and used as a key ingredient in vaccines, has been replicated in an alternative plant host for the first time, opening unprecedented opportunities for the vaccine industry.
Published How HIV smuggles its genetic material into the cell nucleus



Around one million individuals worldwide become infected with HIV, the virus that causes AIDS, each year. To replicate and spread the infection, the virus must smuggle its genetic material into the cell nucleus and integrate it into a chromosome. Research teams have now discovered that its capsid has evolved into a molecular transporter. As such, it can directly breach a crucial barrier, which normally protects the cell nucleus against viral invaders. This way of smuggling keeps the viral genome invisible to anti-viral sensors in the cytoplasm.
Published How macrophages regulate regenerative healing in spiny mice



A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.
Published Cellular scaffolding rewired to make microscopic railways



Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.
Published The underground network: Decoding the dynamics of plant-fungal symbiosis



The intricate dance of nature often unfolds in mysterious ways, hidden from the naked eye. At the heart of this enigmatic tango lies a vital partnership: the symbiosis between plants and a type of fungi known as arbuscular mycorrhizal (AM) fungi. New groundbreaking research delves into this partnership, revealing key insights that deepen our understanding of plant-AM fungi interactions and could lead to advances in sustainable agriculture.
Published Simulations show how HIV sneaks into the nucleus of the cell



A new study has revealed how HIV squirms its way into the nucleus as it invades a cell.
Published Researchers pinpoint most likely source of HIV rebound infection



Antiretroviral therapy (ART) does an excellent job at suppressing HIV to undetectable levels in the blood. However, small amounts of latent virus hide throughout the body, and when treatment is stopped, it opens the door for the virus to rebound. Researchers identified which tissues SIV, the nonhuman primate version of HIV, reemerges from first, just seven days after ART is stopped.
Published How does HIV get into the cell's cenetr to kickstart infection?



UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.
Published Research of water droplet interfaces that offer the secret ingredient for building life



Scientists have experimental evidence that the key step in protein formation can occur in droplets of pure water.
Published New tool reveals gene behavior in bacteria



Researchers showed that the way in which genes are turned on and off as bacteria grow provide clues to their regulation.
Published New study unveils how plants control the production of reactive oxygen species



Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.
Published Tiny worm, giant leap: Discovery of highly specific fatty acid attachment to proteins



In a world where the intricacies of molecular biology often seem as vast and mysterious as the cosmos, a new groundbreaking study delves into the microscopic universe of proteins, unveiling a fascinating aspect of their existence. This revelation could hold profound implications for the understanding and treatment of a myriad of human diseases.
Published Don't overeat: How archaea toggle the nitrogen-uptake switch



By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.
Published Student discovers 200-million-year-old flying reptile



Gliding winged-reptiles were amongst the ancient crocodile residents of the Mendip Hills in Somerset, England, researchers at the have revealed.
Published Single-celled kamikazes spearhead bacterial infection



You suddenly feel sick -- pathogenic bacteria have managed to colonize and spread in your body! The weapons they use for their invasion are harmful toxins that target the host's defense mechanisms and vital cell functions. Before these deadly toxins can attack host cells, bacteria must first export them from their production site -- the cytoplasm -- using dedicated secretion systems.
Published DNA construction led to unexpected discovery of important cell function



Researchers have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases.
Published New technique visualizes mechanical structure of the cell nucleus



The cell nucleus is considered to be the control center of vital cellular processes, but its material properties continue to puzzle scientists. An international research team has now developed a new technique that provides a previously unattainable view of the mechanical properties inside this control center. For the first time, it has been possible to visualize over time its peculiar dynamic structural features in living cells, which appear to be crucial for cell function.
Published Nearly dead plants brought back to life: Keys to aging hidden in the leaves



Scientists have known about a particular organelle in plant cells for over a century. However, scientists have only now discovered that organelle's key role in aging.
Published Study throws our understanding of gene regulation for a loop



To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. Scientists now address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.
Published Machine learning reveals sources of heterogeneity among cells in our bodies



A team of scientists discovered the secrets of cell variability in our bodies. The findings of this research are expected to have far-reaching effects, such as improvement in the efficacy of chemotherapy treatments, or set a new paradigm in the study of antibiotic-resistant bacteria.