Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Paleontology: Dinosaurs
Published How cord-like aggregates of bacteria lead to tuberculosis infections



The ability of Mycobacterium tuberculosis (MTB), a serious respiratory infection, to form snake-like cords was first noted nearly 80 years ago. Investigators report the biophysical mechanisms by which these cords form and demonstrate how several generations of dividing bacteria hang together to create these structures that enable resistance to antibiotics.
Published Generating clean electricity with chicken feathers



Turning unused waste from food production into clean energy: Researchers are using chicken feathers to make fuel cells more cost-effective and sustainable.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published Restoring the function of a human cell surface protein in yeast cells



Yeast cells are widely used to study G protein-coupled receptors (GPCRs), a large group of cell surface proteins in humans. However, several of these proteins lose their function when introduced into yeast cells. To tackle this issue, researchers developed an innovative strategy to restore GPCR function in yeast cells by inducing random mutations. Their findings can help understand GPCRs better and could pave the way to therapeutic breakthroughs for many diseases.
Published Soft optical fibers block pain while moving and stretching with the body



New soft, implantable fibers can deliver light to major nerves through the body. They are an experimental tool for scientists to explore the causes and potential treatments for peripheral nerve disorders in animal models.
Published Scientists uncover new way viruses fight back against bacteria



A microscopic discovery will not only enable scientists to understand the microbial world around us but could also provide a new way to control CRISPR-Cas biotechnologies.
Published Unlocking the secrets of cell behavior on soft substrates: A paradigm shift in mechanobiology



A research group has developed a new method for studying how cancer cells function in softer and stiffer tissue environments. This insight challenges the existing paradigm, opening up new possibilities for research in cancer biology and tissue engineering.
Published Unlocking secrets of immune system proteins: A potential path to new treatments



Using cryo-electron microscopy (cryo-EM), researchers captured unprecedented images of key immune system receptors interacting with messenger proteins, elucidating how the receptors change shape upon activation and transmit signals within the cell. The findings suggest new pathways for developing therapeutic molecules for diseases such as COVID-19, rheumatoid arthritis, neurodegenerative diseases and cancer.
Published Boosting weak immune system: Scientists find an unusual weapon against virus



Infections with cytomegalovirus (CMV) are extremely common and often pose no major threat to the vast majority of people. They can however be deadly for people whose immune system is weakened, e.g., after bone marrow transplantation. Current treatments against CMV infections are very limited and can have severe side effects. Researchers now propose a new way to protect against CMV. Instead of targeting the virus, their approach boosts the weak immune system and lets it fight the virus on its own.
Published Scientists discover the possible triggers for bacterial pathogens, opening the door for new treatment strategies



The legendary Alexander Fleming, who famously discovered penicillin, once said 'never to neglect an extraordinary appearance or happening.' And the path of science often leads to just that. New research is turning the page in our understanding of harmful bacteria and how they turn on certain genes, causing disease in our bodies.
Published Fungal infection in the brain produces changes like those seen in Alzheimer's disease



Researchers have discovered how the fungus Candida albicans enters the brain, activates two separate mechanisms in brain cells that promote its clearance, and, important for the understanding of Alzheimer's disease development, generates amyloid beta (Ab)-like peptides, toxic protein fragments from the amyloid precursor protein that are considered to be at the center of the development of Alzheimer's disease.
Published Can't stop binging on fries and BBQ?



People overeat and become overweight for a variety of reasons. The fact that flavorful high-calorie food is often available nearly everywhere at any time doesn't help. Researchers have determined for the first time why certain chemicals in cooked or processed foods, called advanced glycation end products, or AGEs, increase hunger and test our willpower or ability to make healthy choices when it comes to food.
Published Peering inside cells to see how they respond to stress



The heat shock response of cells is a classic model of biological adaptation, part of the fundamental processes of life -- conserved in creatures from single-celled yeast to humans -- that allow our cells to adjust to changing conditions in their environment. For years, scientists have focused on how different genes respond to heat stress to understand this survival technique. Now, thanks to the innovative use of advanced imaging techniques, researchers are getting an unprecedented look at the inner machinery of cells to see how they respond to heat stress.
Published Climate change coping mechanism discovered in humble algae



One of the building blocks of ocean life can adapt to cope with the effects of climate change, according to new research. The discovery holds promises for biotechnology developments that could counter the negative effects of changing environmental conditions, such as ocean warming and even the reduction in the productivity of crops.
Published Fecal microbe transplants: B. vulgatus genes that correlate with early colonization



Fecal microbe transplants from healthy donors can treat patients with recurrent Clostridium difficile infections. However, after tens of thousands transplants, little was known about which donor strains provide long-term engraftment, and which engraft early after the transplant. Most failures of fecal microbe transplantation occur in the first four weeks. Researchers have now found 19 Bacteroides vulgatus genes that were unique to three strains that show early engraftment in patients after a fecal transplant, as opposed to seven strains that did not show early engraftment.
Published Win-win in muscle research: Faster results and fewer laboratory animals thanks to new method



To study muscle diseases, scientists rely on the mouse as a model organism. Researchers have now developed a new method that is not only faster and more efficient than conventional ones but also greatly reduces the number of experimental animals needed for studying the function of genes in muscle fibers.
Published Omega-3 discovery moves us closer to 'precision nutrition' for better health



Researchers have obtained new insights into how African-American and Hispanic-American people’s genes influence their ability to use Omega-3 and Omega-6 fatty acids for good health. The findings are an important step toward “precision nutrition” – where a diet tailored to exactly what our bodies need can help us live longer, healthier lives.
Published Newfound mechanism suggests drug combination could starve pancreatic cancer



A study found that a new combination of treatments safely decreased growth of pancreatic cancer in mice by preventing cancer cells from scavenging for fuel.
Published Epigenetic regulator MOF drives mitochondrial metabolism



Researchers have unveiled a new mechanism for regulating mitochondrial function. The findings reveal the critical role played by the enzymatic activity of the lysine acetyltransferase MOF in maintaining mitochondrial integrity and function through acetylation of mitochondrial electron transport chain component COX17. Cells lacking MOF-mediated COX17 acetylation exhibit dramatic mitochondrial defects and impaired ability to produce energy. Underscoring the clinical relevance of these findings, the team also showed that cells from human patients with a developmental disorder caused by mutations in MOF also exhibited respiratory defects that could be ameliorated by interventions such as acetylation-mimetic COX17 or mitochondrially targeted MOF.
Published How male mosquitoes compensate for having only one X chromosome


Researchers have discovered the master regulator responsible for balancing the expression of X chromosome genes between males and females in the malaria mosquito. This discovery helps scientists better understand the evolution of the epigenetic mechanisms responsible for equalizing gene expression between the sexes. The findings may contribute to the development of new ways to prevent the spread of malaria.