Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Chemistry: General
Published Breakthrough in molecular control: New bioinspired double helix with switchable chirality



The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.
Published How ribosomes in our cells enable protein folding



Scientists discovered a role played by ribosomes during the folding of new proteins in cells.
Published Viral defense protein speeds up female stem cell production



A viral defense mechanism can be used to accelerate the creation of female stem cell lines in mice. The findings can boost efforts in medical research, drug testing, and regenerative therapies, particularly for women and individuals with two X chromosomes.
Published Forever chemical pollution can now be tracked



Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.
Published Do smells prime our gut to fight off infection?



In nematodes and humans, mitochondrial stress in the nervous system initiates a whole-body response that is most pronounced in the gut. A recent study showed that in nematodes, the odor of a pathogen triggers the nervous system to broadcast this response to the rest of the organism, prepping mitochondria in intestinal cells to fight a bacterial infection. Humans, too, may be able to sense pathogenic odors that prepare the gut for an infection.
Published Discovering how plants make life-and-death decisions



Researchers have discovered two proteins that work in tandem to control an important response to cell stress.
Published Study on planet-warming contrails 'a spanner in the works' for aviation industry



Modern commercial aircraft flying at high altitudes create longer-lived planet-warming contrails than older aircraft, a new study has found.
Published New device for on-the-spot water testing



Researchers at University of Galway have developed a new, portable technology for on-the-spot testing of water quality to detect one of the most dangerous types of bacteria. Ireland regularly reports the highest crude incidence rates of the pathogen Shiga toxigenic Escherichia coli -- STEC for short -- in Europe over the recent years.
Published Advanced chelators offer efficient and eco-friendly rare earth element recovery



The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.
Published Concept for efficiency-enhanced noble-metal catalysts



The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.
Published Engineers develop general, high-speed technology to model, explain catalytic reactions



A research team developed artificial intelligence technology that could find ways to improve researchers' understanding of the chemical reactions involved in ammonia production and other complex chemical reactions.
Published Discovery of a new population of macrophages promoting lung repair after viral infections



Researchers have discovered a new population of macrophages, important innate immune cells that populate the lungs after injury caused by respiratory viruses. These macrophages are instrumental in repairing the pulmonary alveoli. This groundbreaking discovery promises to revolutionize our understanding of the post-infectious immune response and opens the door to new regenerative therapies.
Published Reduction in folate intake linked to healthier aging in animal models



Scientists found that decreasing folate intake can support healthier metabolisms in aging animal models, challenging the conventional belief that high folate consumption universally benefits health.
Published Coinfecting viruses impede each other's ability to enter cells



The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.
Published What gave the first molecules their stability?



The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.
Published Genetic signatures of domestication identified in pigs, chickens



Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.
Published Precise package delivery in cells?



Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published Sustainable catalysts: Crystal phase-controlled cobalt nanoparticles for hydrogenation



Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, scientists report. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.
Published Sustainable and reversible 3D printing method uses minimal ingredients and steps



A new 3D printing method developed by engineers is so simple that it uses a polymer ink and salt water solution to create solid structures. The work has the potential to make materials manufacturing more sustainable and environmentally friendly.
Published Engineering researchers crack the code to boost solar cell efficiency and durability



Photovoltaic (PV) technologies, which convert light into electricity, are increasingly applied worldwide to generate renewable energy. Researchers have now developed a molecular treatment that significantly enhances the efficiency and durability of perovskite solar cells. Their breakthrough will potentially accelerate the large-scale production of this clean energy.