Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular, Paleontology: Fossils
Published Slimming down a colossal fossil whale



A 30 million year-old fossil whale may not be the heaviest animal of all time after all, according to a new analysis by paleontologists. The new analysis puts Perucetus colossus back in the same weight range as modern whales and smaller than the largest blue whales ever recorded.
Published The Golgi organelle's ribbon structure is not exclusive to vertebrates, contrary to previous consensus



Researchers report that the Golgi ribbon, an organelle structure previously thought to be exclusive to vertebrates, is also present in animal taxa, including mollusks, earthworms, and sea urchins. The function of the Golgi ribbon is still enigmatic, but its presence in diverse animal lineages indicates that its function is not vertebrate specific, as previously thought. The team also showed Golgi ribbons form at a specific timepoint during embryogenesis, which suggests that they might play a role in cell differentiation.
Published How first cells could have formed on Earth



New phospholipid discovery brings researchers closer to understanding how primordial cells emerged during origin of life.
Published New tool helps decipher gene behavior



Scientists have extensively researched the structure and sequence of genetic material and its interactions with proteins in the hope of understanding how our genetics and environment interact in diseases. This research has partly focused on 'epigenetic marks', which are chemical modifications to DNA, RNA, and the associated proteins (known as histones).
Published Radio waves can tune up bacteria to become life-saving medicines



Scientists have found a new way to alter the DNA of bacterial cells -- a process used to make many vital medicines including insulin -- much more efficiently than standard industry techniques.
Published Nanocarrier with escape reflex



Protein-based drugs must be transported into cells in a way that prevents their immediate degradation. A new approach is intended to ensure that they remain intact only in certain cells, such as cancer cells. A Japanese research team has introduced a nanocarrier that can 'escape' from endosomes before its cargo is destroyed there. This ability to escape is only triggered within the endosomes of certain tumor cells.
Published Change in gene code may explain how human ancestors lost tails



A genetic change in our ancient ancestors may partly explain why humans don't have tails like monkeys.
Published Low-Temperature Plasma used to remove E. coli from hydroponically grown crops



In a new study, a team sterilized a hydroponic nutrient solution using low-temperature plasma generated from electricity and the oxygen in the atmosphere. This new sterilization technique may allow farmers to grow crops without the use of chemical pesticides, representing an important advance in agricultural technology for sustainable crop production.
Published New discovery shows how cells defend themselves during stressful situations



A recent study has unveiled an exciting discovery about how our cells defend themselves during stressful situations. The research shows that a tiny modification in the genetic material, called ac4C, acts as a crucial defender, helping cells create protective storage units known as stress granules. These stress granules safeguard important genetic instructions when the cell is facing challenges. The new findings could help shed light on relevant molecular pathways that could be targeted in disease.
Published Scientists use blue-green algae as a surrogate mother for 'meat-like' proteins



Researchers have not only succeeded in using blue-green algae as a surrogate mother for a new protein -- they have even coaxed the microalgae to produce 'meat fiber-like' protein strands. The achievement may be the key to sustainable foods that have both the 'right' texture and require minimal processing.
Published Microbial comics: RNA as a common language, presented in extracellular speech-bubbles



Decoding the conversations between microbes of hypersaline environments reveals deep insights into the origins of complex life.
Published Human stem cells coaxed to mimic the very early central nervous system



The first stem cell culture method that produces a full model of the early stages of the human central nervous system has been developed by a team of engineers and biologists.
Published Cutting-edge 'protein lawnmower' created



Scientists have designed the first synthetic protein-based motor which harnesses biological reactions to fuel and propel itself. 'Imagine if a Roomba could be powered only by the dirt it picks up,' says one of the authors of the study. The motor uses the digestive enzyme trypsin to cut the peptides and convert them into the energy it needs to propel itself.
Published The small intestine adapt its size according to nutrient intake



Resizing of the intestine is a highly conserved strategy employed by a wide range of organisms to cope with fluctuation in nutrient availability. Nevertheless, very little is known about the mechanisms and signals underlying nutrient-mediated gut resizing. New research has identified one of the signaling pathways implicated in this process.
Published Biomolecular condensates -- regulatory hubs for plant iron supply



Iron is a micronutrient for plants. Biologists now show that regulatory proteins for iron uptake behave particularly dynamically in the cell nucleus when the cells are exposed to blue light -- an important signal for plant growth. They found that the initially homogeneously distributed proteins relocated together into 'biomolecular condensates' in the cell nucleus shortly after this exposure.
Published Ribosomes: Molecular wedge assists recycling



Researchers reveal how cells regenerate protein factories at endoplasmic reticulum.
Published Compound vital for all life likely played a role in life's origin



A chemical compound essential to all living things has been synthesized in a lab in conditions that could have occurred on early Earth, suggesting it played a role at the outset of life.
Published Metabolic diseases may be driven by gut microbiome, loss of ovarian hormones



Mice that received fecal implants from donors that had their ovaries removed gained more fat mass and had greater expression of liver genes associated with inflammation, Type 2 diabetes, fatty liver disease and atherosclerosis. The findings may shed light on the greater incidence of metabolic dysfunction in postmenopausal women.
Published Damage to cell membranes causes cell aging



Researchers have discovered that damage to the cell membrane promotes cellular senescence, or cell aging.
Published High resolution techniques reveal clues in 3.5 billion-year-old biomass



To learn about the first organisms on our planet, researchers have to analyze the rocks of the early Earth. These can only be found in a few places on the surface of the Earth. The Pilbara Craton in Western Australia is one of these rare sites: there are rocks there that are around 3.5 billion years old containing traces of the microorganisms that lived at that time. A research team has now found new clues about the formation and composition of this ancient biomass, providing insights into the earliest ecosystems on Earth.