Showing 20 articles starting at article 1
Categories: Biology: Molecular, Offbeat: Computers and Math
Published Strength training activates cellular waste disposal



The elimination of damaged cell components is essential for the maintenance of the body's tissues and organs. An international research team has made significant findings on mechanisms for the clearing of cellular wastes, showing that strength training activates such mechanisms. The findings could form the basis for new therapies for heart failure and nerve diseases, and even afford benefits for manned space missions.
Published Toward a code-breaking quantum computer



Building on a landmark algorithm, researchers propose a way to make a smaller and more noise-tolerant quantum factoring circuit for cryptography.
Published Revealing DNA behavior in record time



Studying how single DNA molecules behave helps us to better understand genetic disorders and design better drugs. Until now however, examining DNA molecules one-by-one was a slow process. Biophysicists have developed a technique that speeds up screening of individual DNA molecules at least a thousand times. With this technology, they can measure millions of DNA molecules within a week instead of years to decades.
Published Engineers design lookalike drug carrier to evade lung's lines of defense



Managing hard-to-treat respiratory illnesses like asthma and pulmonary fibrosis just got easier if a new drug-carrying molecule is as sneaky as its inventors think.
Published DNA tech offers both data storage and computing functions



Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.
Published Hydrogels can play Pong by 'remembering' previous patterns of electrical simulation



Non-living hydrogels can play the video game Pong and improve their gameplay with more experience, researchers report. The researchers hooked hydrogels up to a virtual game environment and then applied a feedback loop between the hydrogel's paddle -- encoded by the distribution of charged particles within the hydrogel -- and the ball's position -- encoded by electrical stimulation. With practice, the hydrogel's accuracy improved by up to 10%, resulting in longer rallies. The researchers say that this demonstrates the ability of non-living materials to use 'memory' to update their understanding of the environment, though more research is needed before it could be said that hydrogels can 'learn.'
Published Gut molecule slows fat burning during fasting



In a struggle that probably sounds familiar to dieters everywhere, the less a Caenorhabditis elegans (C. elegans) worm eats, the more slowly it loses fat. Now, scientists have discovered why: a small molecule produced by the worms' intestines during fasting travels to the brain to block a fat-burning signal during this time.
Published Next time you beat a virus, thank your microbial ancestors



When you get infected with a virus, some of the first weapons your body deploys to fight it were passed down to us from our microbial ancestors billions of years ago. According to new research, two key elements of our innate immune system came from a group of microbes called Asgard archaea.
Published Life from a drop of rain: New research suggests rainwater helped form the first protocell walls



New research shows that rainwater could have helped create a meshy wall around protocells 3.8 billion years ago, a critical step in the transition from tiny beads of RNA to every bacterium, plant, animal, and human that ever lived.
Published Beetle that pushes dung with the help of 100 billion stars unlocks the key to better navigation systems in drones and satellites



An insect species that evolved 130 million years ago is the inspiration for a new research study to improve navigation systems in drones, robots, and orbiting satellites.
Published Engineered Bacteria make thermally stable plastics similar to polystyrene and PET



Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable. Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of. The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed.
Published Benefits and downside of fasting



Researchers identified a signaling pathway in mice that boosts intestinal stem cells' regeneration abilities after fasting. When cancerous mutations occurred during this regenerative period, mice were more likely to develop early-stage intestinal tumors.
Published Self-repairing mitochondria use novel recycling system



A newly identified identified cellular mechanism allows mitochondria to recycle localized damage and maintain healthy function.
Published Surprising mechanism for removing dead cells identified



A tandem signaling process turns ordinary cells into an efficient cleanup crew.
Published Compound in rosemary extract can reduce cocaine sensitivity



A team of researchers has discovered that an antioxidant found in rosemary extract can reduce volitional intakes of cocaine by moderating the brain's reward response, offering a new therapeutic target for treating addiction.
Published Researchers teaching artificial intelligence about frustration in protein folding



Scientists have found a new way to predict how proteins change their shape when they function, which is important for understanding how they work in living systems. While recent artificial intelligence (AI) technology has made it possible to predict what proteins look like in their resting state, figuring out how they move is still challenging because there is not enough direct data from experiments on protein motions to train the neural networks.
Published Deadly sea snail toxin could be key to making better medicines



Scientists are finding clues for how to treat diabetes and hormone disorders in an unexpected place: a toxin from one of the most venomous animals on the planet.
Published Adaptive 3D printing system to pick and place bugs and other organisms



A new adaptive 3D printing system can identify the positions of randomly distributed organisms and safely move them to specific locations for assembly.
Published Gut microbial pathway identified as target for improved heart disease treatment



Researchers have made a significant discovery about how the gut microbiome interacts with cells to cause cardiovascular disease. The study found phenylacetylglutamine (PAG), produced by gut bacteria as a waste product, then absorbed and formed in the liver, interacts with previously undiscovered locations on beta-2 adrenergic receptors on heart cells once it enters the circulation.
Published Analyzing 'Finnegans Wake' for novel spacing between punctuation marks



James Joyce's tome 'Finnegans Wake' famously breaks the rules of normal prose through its unusual, dreamlike stream of consciousness, and new work in chaos theory takes a closer look at how Joyce's challenging novel stands out mathematically. Researchers compared the distribution of punctuation marks in various experimental novels to determine the underlying order of 'Finnegans Wake' and by statistically analyzing the texts, researchers found the tome exhibits an unusual but statistically identifiable structure. The wide singularity spectrum was perfectly symmetrical, meaning sentence length variability follows an orderly curve.