Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular
Published Microscopy technique 'paves way' for improving understanding of cellular functions (via sciencedaily.com) Original source
Scientists have developed a new way of counting labelled proteins in living cells that could become a standard and valuable tool in the field of biomedical research.
Published How ribosomes in our cells enable protein folding (via sciencedaily.com) Original source
Scientists discovered a role played by ribosomes during the folding of new proteins in cells.
Published Viral defense protein speeds up female stem cell production (via sciencedaily.com) Original source
A viral defense mechanism can be used to accelerate the creation of female stem cell lines in mice. The findings can boost efforts in medical research, drug testing, and regenerative therapies, particularly for women and individuals with two X chromosomes.
Published Do smells prime our gut to fight off infection? (via sciencedaily.com) Original source
In nematodes and humans, mitochondrial stress in the nervous system initiates a whole-body response that is most pronounced in the gut. A recent study showed that in nematodes, the odor of a pathogen triggers the nervous system to broadcast this response to the rest of the organism, prepping mitochondria in intestinal cells to fight a bacterial infection. Humans, too, may be able to sense pathogenic odors that prepare the gut for an infection.
Published Discovering how plants make life-and-death decisions (via sciencedaily.com) Original source
Researchers have discovered two proteins that work in tandem to control an important response to cell stress.
Published Discovery of a new population of macrophages promoting lung repair after viral infections (via sciencedaily.com) Original source
Researchers have discovered a new population of macrophages, important innate immune cells that populate the lungs after injury caused by respiratory viruses. These macrophages are instrumental in repairing the pulmonary alveoli. This groundbreaking discovery promises to revolutionize our understanding of the post-infectious immune response and opens the door to new regenerative therapies.
Published Reduction in folate intake linked to healthier aging in animal models (via sciencedaily.com) Original source
Scientists found that decreasing folate intake can support healthier metabolisms in aging animal models, challenging the conventional belief that high folate consumption universally benefits health.
Published Coinfecting viruses impede each other's ability to enter cells (via sciencedaily.com) Original source
The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.
Published What gave the first molecules their stability? (via sciencedaily.com) Original source
The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.
Published Genetic signatures of domestication identified in pigs, chickens (via sciencedaily.com) Original source
Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.
Published Precise package delivery in cells? (via sciencedaily.com) Original source
Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published Breakthrough in plant disease: New enzyme could lead to anti-bacterial pesticides (via sciencedaily.com) Original source
Scientists uncover a pivotal enzyme, XccOpgD, and its critical role in synthesizing C G16, a key compound used by Xanthomonas pathogens to enhance their virulence against plants. This breakthrough opens new avenues for developing targeted pesticides that combat plant diseases without harming beneficial organisms. Insights into XccOpgD's enzymatic mechanism and optimal conditions offer promising prospects for sustainable agriculture, bolstering crop resilience and global food security while minimizing environmental impact.
Published Talking about regeneration (via sciencedaily.com) Original source
Researchers transferred genes from simple organisms capable of regenerating their bodies into common fruit flies, more complex animals that cannot. They found the transferred gene suppressed an age-related intestinal issue in the flies. Their results suggest studying genes specific to animals with high regenerative capability may uncover new mechanisms for rejuvenating stem cell function and extending the healthy lifespan of unrelated organisms.
Published The next generation of RNA chips (via sciencedaily.com) Original source
An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.
Published New principle for treating tuberculosis (via sciencedaily.com) Original source
Researchers have succeeded in identifying and synthesizing a group of molecules that can act against the cause of tuberculosis in a new way. They describe that the so-called callyaerins act against the infectious disease by employing a fundamentally different mechanism compared to antibiotic agents used to date.
Published Unraveling a key junction underlying muscle contraction (via sciencedaily.com) Original source
Using powerful new visualization technologies, researchers have captured the first 3-D images of the structure of a key muscle receptor, providing new insights on how muscles develop across the animal kingdom and setting the stage for possible future treatments for muscular disorders.
Published Precise genetics: New CRISPR method enables efficient DNA modification (via sciencedaily.com) Original source
A research group has developed a new method that further improves the existing CRISPR/Cas technologies: it allows a more precise and seamless introduction of tags into proteins at the gene level. This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.
Published Platypus and chicken reveal how chromosomes balance between the sexes (via sciencedaily.com) Original source
Geneticists uncover new insights into how sex chromosome systems work in the platypus and the chicken -- which will lead to better understandings of our own sex chromosome evolution and gene regulation.
Published How researchers turn bacteria into cellulose-producing mini-factories (via sciencedaily.com) Original source
Researchers have modified certain bacteria with UV light so that they produce more cellulose. The basis for this is a new approach with which the researchers generate thousands of bacterial variants and select those that have developed into the most productive.
Published MicroRNA study sets stage for crop improvements (via sciencedaily.com) Original source
MicroRNAs can make plants more capable of withstanding drought, salinity, pathogens and more. However, in a recent study scientists showed just how much we didn't know about the intricate processes plants use to produce them.