Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Chemistry: Thermodynamics
Published New cooling ceramic can enhance energy efficiency for the construction sector and help combat global warming



Researchers have made a significant breakthrough in developing a passive radiative cooling (PRC) material. The material, known as cooling ceramic, has achieved high-performance optical properties for energy-free and refrigerant-free cooling generation. Its cost-effectiveness, durability and versatility make it highly suitable for commercialization in numerous applications, particularly in building construction.
Published Barnacle bends shape to fend off warm-water sea snails on the move



Some barnacles are 'morphing' to protect themselves from predatory warm-water sea snails, which are expanding into their territory due to climate change.
Published Understanding the dynamic behavior of rubber materials



Rubber-like materials can exhibit both spring-like and flow-like behaviors simultaneously, which contributes to their exceptional damping abilities. To understand the dynamic viscoelasticity of these materials, researchers have recently developed a novel system that can conduct dynamic mechanical analysis and dynamic micro X-ray computed tomography simultaneously. This technology can enhance our understanding of the microstructure of viscoelastic materials and pave the way for the development of better materials.
Published Zooplankton in ocean and freshwater are rapidly escalating the global environmental threat of plastics



A collaborative research team has recently revealed that rotifers, a kind of microscopic zooplankton common in both fresh and ocean water around the world, are able to chew apart microplastics, breaking them down into even smaller, and potentially more dangerous, nanoplastics -- or particles smaller than one micron. Each rotifer can create between 348,000 -- 366,000 per day, leading to uncountable swarms of nanoparticles in our environment.
Published A different take on phosphorus: Bacteria use organic phosphorus and release methane in the process



Some bacteria are able to tap into unusual sources of nutrients in the surface water of the oceans. This enables them to increase their primary production and extract more carbon dioxide from the atmosphere. In doing so, however, they release the potent greenhouse gas methane.
Published Device 'smells' seawater to discover, detect novel molecules



Under the ocean's surface, marine organisms are constantly releasing invisible molecules. Some of the chemical clues reveal which creatures are nearby, while others could be used someday as medications. Now, researchers report a proof-of-concept device that 'sniffs' seawater, trapping dissolved compounds for analyses. The team showed that the system could easily concentrate molecules that are present in underwater caves and holds promise for drug discovery in fragile ecosystems, including coral reefs.
Published Why a surprising discovery, warming seas and the demise of the 'Meg' may spell trouble for more and more sharks



Some unexpected shark strandings and subsequent surprises following autopsies have, ironically, taken marine biologists millions of years back in time as they look to the future with concern. Adding chapters to an evolutionary tale involving the infamous megalodon shark (the 'Meg'), they think their work suggests there are more warm-blooded sharks out there than previously believed, and -- based on the Meg's demise -- these species may be at great risk from warming seas.
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published 450-million-year-old organism finds new life in Softbotics



Researchers have used fossil evidence to engineer a soft robotic replica of pleurocystitids, a marine organism that existed nearly 450 million years ago and is believed to be one of the first echinoderms capable of movement using a muscular stem.
Published New algae species rewrites understanding of reef systems



An international team of marine scientists has identified and officially named four species of algae new to science, challenging previous taxonomical assumptions within the Porolithon genus. The discovery has far-reaching implications for our understanding of the ecological role of these algae in the coral reef ecosystem.
Published Two fins are better than one: Fish synchronize tail fins to save energy



They say two heads are better than one. But in the world of fish, it appears two fins are better than one. Researchers have produced a theoretical model that demonstrates the underlying mechanisms behind how fish will synchronize their fin movements to ride each other's vortices, thereby saving energy.
Published Crust-forming algae are displacing corals in tropical waters worldwide



Over the past few decades, algae have been slowly edging corals out of their native reefs across the globe by blocking sunlight, wearing the corals down physically, and producing harmful chemicals. But in recent years, a new type of algal threat has surfaced in tropical regions like the Caribbean -- one that spreads quickly and forms a crust on top of coral and sponges, suffocating the organisms underneath and preventing them from regrowing. Marine biologists report that peyssonnelioid alga crusts, or PACs, are expanding quickly across reefs worldwide, killing off corals and transforming entire ecosystems.
Published Researchers develop solid-state thermal transistor for better heat management



A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement. The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.
Published Adult coral can handle more heat and keep growing thanks to heat-evolved symbionts



Adult fragments of a coral species can better tolerate bleaching and recover faster when treated with tougher heat-evolved symbionts, new research indicates. The study also found that treatment with the heat-evolved symbionts did not compromise the coral's ability to grow. This differs from previous studies on Great Barrier Reef corals which found that naturally heat tolerant symbionts could enhance heat resistance in adult corals, but at a cost to its growth.
Published Stronger, stretchier, self-healing plastic



An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.
Published Underground car parks heat up groundwater



The heat given off by car engines warms up underground car parks in such a way that the heat passes through the ground into the groundwater. In Berlin alone, enough energy is transferred to the groundwater to supply 14,660 households with heat. According to the researchers, this warming could have long-term effects on groundwater quality. In their study, they also propose a solution. Using geothermal energy and heat pumps, the heat could be extracted from the ground and utilized.
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Investigators examine shifts in coral microbiome under hypoxia



A new study provides the first characterization of the coral microbiome under hypoxia, insufficient oxygen in the water.
Published In a surprising finding, light can make water evaporate without heat



At the interface of water and air, light can, in certain conditions, bring about evaporation without the need for heat, according to a new study.
Published Where is a sea star's head? Maybe just about everywhere



A new study that combines genetic and molecular techniques helps solve the riddle of sea star (commonly called starfish) body plans, and how sea stars start life with bilateral body symmetry -- just like humans -- but grow up to be adults with fivefold 'pentaradial' symmetry.