Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Physics: Quantum Physics
Published Ancient viruses discovered in coral symbionts' DNA



The symbiotic organisms that live in corals and provide them with their dramatic colors contain fragments of ancient RNA viruses that are as much as 160 million years old.
Published Finally solved! The great mystery of quantized vortex motion



Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production



According to new research, the amount of oxygen in one of 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. The new study identifies how a proton pumping enzyme (known as VHA) aids in global oxygen production and carbon fixation from phytoplankton.
Published A nanocrystal shines on and off indefinitely



Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.
Published Protecting large ocean areas doesn't curb fishing catches



In the first-ever 'before and after' assessment of the impact of establishing Mexico's Revillagigedo National Park on the fishing industry, a team of US and Mexican researchers found that Mexico's industrial fishing sector did not incur economic losses five years after the park's creation despite a full ban in fishing activity within the MPA.
Published The clams that fell behind, and what they can tell us about evolution and extinction



A new study examined how bivalves -- the group that includes clams, mussels, scallops, and oysters -- evolved among many others in the period of rapid evolution known as the Cambrian Explosion. The team found that though many other lineages burst into action and quickly evolved a wide variety of forms and functions, the bivalves lagged behind. The study has implications for how we understand evolution and the impact of extinctions.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons



Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published 'A blessing in disguise!' Physics turning bad into good



Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.
Published Forging a dream material with semiconductor quantum dots



Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Snapshots of photoinjection



Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Deep sea surveys detect over five thousand new species in future mining hotspot



There is a massive, mineral-rich region in the Pacific Ocean -- about twice the size of India -- called the Clarion-Clipperton Zone (CCZ), which has already been divided up and assigned to companies for future deep-sea mining. To better understand what may be at risk once companies start mining, a team of biologists has built the first 'CCZ checklist' by compiling all the species records from previous research expeditions to the region. Their estimates of the species diversity of the CCZ included a total of 5,578 different species, an estimated 88% - 92% of which are entirely new to science.
Published Global macrogenetic map of marine habitat-forming species



Species known as marine habitat-forming species -- gorgonians, corals, algae, seaweeds, marine phanerogams, etc.-- are organisms that help generate and structure the underwater landscapes. These are natural refuges for other species, and provide biomass and complexity to the seabeds. But these key species in marine ecosystems are currently threatened by climate change and other perturbations derived from human activity. Now, a study warns that even in the marine protected areas (MPAs) the genetic diversity of structural species is not protected, although it is essential for the response and adaptation of populations to changes that alter the natural environment.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published What you count is not necessarily what counts



Seawater is full of bacteria, hundreds of thousands live in every liter. But the sheer number of bacteria living in the water does not necessarily mean a lot. More important is how active they are and how quickly they duplicate.
Published Corals mark friendly algae for ingestion -- revealing possible conservation target



Biologists reveals how coral cells tag friendly algae before ingesting them, initiating a mutually beneficial relationship. This information could guide next-level coral conservation efforts.
Published Fossil of mosasaur with bizarre 'screwdriver teeth' found in Morocco



Scientists have discovered a new species of mosasaur, a sea-dwelling lizard from the age of the dinosaurs, with strange, ridged teeth unlike those of any known reptile. Along with other recent finds from Africa, it suggests that mosasaurs and other marine reptiles were evolving rapidly up until 66 million years ago, when they were wiped out by an asteroid along with the dinosaurs and around 90% of all species on Earth.
Published Uncovering universal physics in the dynamics of a quantum system



New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.