Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Physics: Optics
Published Unlocking spin current secrets: A new milestone in spintronics



Using neutron scattering and voltage measurements, a group of researchers have discovered that a material's magnetic properties can predict spin current changes with temperature. The finding is a major breakthrough in the field of spintronics.
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published Switching off the light to see better



Researchers used structured light and switchable fluorescent molecules to reduce the background light from the out-of-plane regions of microscope samples. This method allowed for the acquisition of images that surpassed the conventional resolution limit, and it may be useful for further study of cell clusters and other biological systems.
Published 2D materials rotate light polarization



Physicists have shown that ultra-thin two-dimensional materials such as tungsten diselenide can rotate the polarization of visible light by several degrees at certain wavelengths under small magnetic fields suitable for use on chips.
Published Superradiant atoms could push the boundaries of how precisely time can be measured



Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers present a new method for measuring the time interval, the second, mitigating some of the limitations that today's most advanced atomic clocks encounter. The result could have broad implications in areas such as space travel, volcanic eruptions and GPS systems.
Published Compact quantum light processing



An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.
Published Surf clams off the coast of Virginia reappear -- and rebound



The Atlantic surfclam, an economically valuable species that is the main ingredient in clam chowder and fried clam strips, has returned to Virginia waters in a big way, reversing a die-off that started more than two decades ago. In a comprehensive study of surfclams collected from an area about 45 miles due east from the mouth of the Chesapeake Bay, scientists found the population to be thriving and growing.
Published Helping migrating salmon survive mortality hot-spot



Researchers used acoustic telemetry to tag and track coho on their journey.
Published Energy scientists unravel the mystery of gold's glow



EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published Fourteen years after the Gulf of Mexico oil spill, endemic fishes face an uncertain future



The 2010 Gulf of Mexico Deepwater Horizon oil spill, the largest accidental spill in history, released almost 100 million gallons of oil, causing significant pollution. A decade later, its long-term effects remain unclear. A study investigating the impact on endemic fish species found 29 of 78 species unreported in museum collections since the spill, suggesting potential loss of biodiversity.
Published Marine microbial populations: Potential sensors of the global change in the ocean



Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.
Published East coast mussel shells are becoming more porous in warming waters



Researchers have found that over the last 120 years, the porosity -- or small-scale holes -- in mussel shells along the East Coast of the United States has increased, potentially due to warming waters. The study analyzed modern mussel shells in comparison to specimens in the Museum's historic collection.
Published Marine plankton behavior could predict future marine extinctions



Marine communities migrated to Antarctica during the Earth's warmest period in 66 million years long before a mass-extinction event.
Published A better view with new mid-infrared nanoscopy



A team has constructed an improved mid-infrared microscope, enabling them to see the structures inside living bacteria at the nanometer scale. Mid-infrared microscopy is typically limited by its low resolution, especially when compared to other microscopy techniques. This latest development produced images at 120 nanometers, which the researchers say is a thirtyfold improvement on the resolution of typical mid-infrared microscopes. Being able to view samples more clearly at this smaller scale can aid multiple fields of research, including into infectious diseases, and opens the way for developing even more accurate mid-infrared-based imaging in the future.
Published Coral reef microbes point to new way to assess ecosystem health



A new study shows that ocean acidification is changing the mix of microbes in coral reef systems, which can be used to assess ecosystem health.
Published Reproductive success improves after a single generation in the wild for descendants of some hatchery-origin Chinook salmon



Researchers who created 'family trees' for nearly 10,000 fish found that first-generation, wild-born descendants of hatchery-origin Chinook salmon in an Oregon river show improved fitness.
Published Huge database gives insight into salmon patterns at sea



A massive new analysis of high seas salmon surveys is enhancing the understanding of salmon ecology, adding details about where various species congregate in the North Pacific Ocean and their different temperature tolerances. The project integrates numerous international salmon studies from the North Pacific dating back to the 1950s.
Published New tagging method provides bioadhesive interface for marine sensors on diverse, soft, and fragile species



Tagging marine animals with sensors to track their movements and ocean conditions can provide important environmental and behavioral information. Existing techniques to attach sensors currently largely rely on invasive physical anchors, suction cups, and rigid glues. While these techniques can be effective for tracking marine animals with hard exoskeletons and large animals such as sharks, individuals can incur physiological and metabolic stress during the tagging process, which can affect the quality of data collection. A newly developed soft hydrogel-based bioadhesive interface for marine sensors, referred to as BIMS, holds promise as an effective, rapid, robust, and non-invasive method to tag and track all sorts of marine species, including soft and fragile species. The BIMS tagging, which is also simple and versatile, can help researchers better understand animal behavior while also capturing oceanographic data critical for helping to better understand some impacts of climate change and for resource management.
Published Plastic pollution can kill variety of ocean embryos



High levels of plastic pollution can kill the embryos of a wide range of ocean animals, new research shows.
Published Photonic computation with sound waves



Optical neural networks may provide the high-speed and large-capacity solution necessary to tackle challenging computing tasks. However, tapping their full potential will require further advances. One challenge is the reconfigurability of optical neural networks. A research team has now succeeded in laying the foundation for new reconfigurable neuromorphic building blocks by adding a new dimension to photonic machine learning: sound waves. The researchers use light to create temporary acoustic waves in an optical fiber. The sound waves generated in this way can for instance enable a recurrent functionality in a telecom optical fiber, which is essential to interpreting contextual information such as language.