Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Space: Astronomy
Published Composition of asteroid Phaethon



Asteroid Phaethon, which is five kilometers in diameter, has been puzzling researchers for a long time. A comet-like tail is visible for a few days when the asteroid passes closest to the Sun during its orbit. However, the tails of comets are usually formed by vaporizing ice and carbon dioxide, which cannot explain this tail. The tail should be visible at Jupiter's distance from the Sun.
Published Solar activity likely to peak next year



Researchers have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year.
Published Fish ecologist's research indicates need to conserve iconic migratory snook in Mexico



Biologists investigated the snook’s almost 400-mile migration up into the rainforest habitat of the Usumacinta River. They have found that the snook, which connect aquatic food webs and support fisheries, spawn and start their lives in coastal nursery habitats before moving into river habitats that offer an array of food resources.
Published Giant sea salt aerosols play major role in Hawai'i's coastal clouds, rain



A new study from atmospheric scientists revealed that the coastline can produce up to five times the concentration of giant sea salt aerosols compared to the open ocean and that coastal clouds may contain more of these particles than clouds over the open ocean -- affecting cloud formation and rain around the Hawaiian Islands.
Published Scientists find both potential threats and promising resources in the thriving colonies of bacteria and fungi on ocean plastic trash



Scientists have found both potential threats and promising resources in the thriving colonies of bacteria and fungi on plastic trash washed up on shores.
Published Deoxygenation levels similar to today's played a major role in marine extinctions during major past climate change event



Scientists have made a surprising discovery that sheds new light on the role that oceanic deoxygenation (anoxia) played in one of the most devastating extinction events in Earth's history. Their finding has implications for current day ecosystems -- and serves as a warning that marine environments are likely more fragile than apparent. New research, published today in leading international journal Nature Geosciences, suggests that oceanic anoxia played an important role in ecosystem disruption and extinctions in marine environments during the Triassic--Jurassic mass extinction, a major extinction event that occurred around 200 million years ago. Surprisingly however, the study shows that the global extent of euxinia (an extreme form of de-oxygenated conditions) was similar to the present day.
Published Pioneering research method reveals bluefin tuna's fate



The Mediterranean spawning grounds of Bluefin tuna -- the largest tuna and one of the most powerful fish in the sea -- are under threat, due to rising sea temperatures. A pioneering research method to decode bluefin 'otoliths' (a stony tissue found in their ear) has determined the threshold sea temperature at which bluefin thrive to be 28 degrees Celsius.
Published New way of searching for dark matter



Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.
Published Alien haze, cooked in a lab, clears view to distant water worlds



Scientists have simulated conditions that allow hazy skies to form in water-rich exoplanets, a crucial step in determining how haziness muddles important telescope observations for the search of habitable worlds beyond the solar system.
Published The Fens of eastern England once held vast woodlands



The Fens of eastern England, a low-lying, extremely flat landscape dominated by agricultural fields, was once a vast woodland filled with huge yew trees, according to new research. Scientists have studied hundreds of tree trunks, dug up by Fenland farmers while ploughing their fields. The team found that most of the ancient wood came from yew trees that populated the area between four and five thousand years ago.
Published Separating out signals recorded at the seafloor



Research shows that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis and interpretation. A new microanalysis approach helps to separate out signals that reveal the relative influence of microbes and that of local climate.
Published How shipwrecks are providing a refuge for marine life



New research has highlighted how the estimated 50,000 wrecks around the UK coastline are protecting the seabed, and the species inhabiting it, in areas still open to bottom-towed fishing.
Published Telescope Array detects second highest-energy cosmic ray ever



In 1991, an experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist. On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. The newly dubbed Amaterasu particle deepens the mystery of the origin, propagation and particle physics of rare, ultra-high-energy cosmic rays.
Published Predicting the fate of shallow coastal ecosystems for the year 2100



A new study of shallow-water ecosystems estimates that, by 2100, climate change and coastal land usage could result in significant shrinkage of coral habitats, tidal marshes, and mangroves, while macroalgal beds remain stable and seagrass meadows potentially expand.
Published NASA's Webb reveals new features in heart of Milky Way



The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.
Published 'Triple star' discovery could revolutionize understanding of stellar evolution



A ground-breaking new discovery could transform the way astronomers understand some of the biggest and most common stars in the Universe. Research by PhD student Jonathan Dodd and Professor René Oudmaijer, from the University's School of Physics and Astronomy, points to intriguing new evidence that massive Be stars -- until now mainly thought to exist in double stars -- could in fact be 'triples'. The remarkable discovery could revolutionise our understanding of the objects -- a subset of B stars -- which are considered an important 'test bed' for developing theories on how stars evolve more generally.
Published Deep-sea mining and warming trigger stress in a midwater jellies



The deep sea is home to one of the largest animal communities on earth which is increasingly exposed to environmental pressures. However, our knowledge of its inhabitants and their response to human-induced stressors is still limited. A new study now provides first insights into the stress response of a pelagic deep-sea jellyfish to ocean warming and sediment plumes caused by deep-sea mining.
Published Hydrogen detected in lunar samples, points to resource availability for space exploration



Researchers have discovered solar-wind hydrogen in lunar samples, which indicates that water on the surface of the Moon may provide a vital resource for future lunar bases and longer-range space exploration.
Published Dwarf galaxies use 10-million-year quiet period to churn out stars



If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.
Published Protect delicate polar ecosystems by mapping biodiversity



Concerted action is required to mitigate the impact of warming on polar ecosystems and sustainably manage these unique habitats.