Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Chemistry: Inorganic Chemistry

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General
Published

It takes a cool microscope and antifreeze to really look at ice      (via sciencedaily.com)     Original source 

Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemistry inspired by one-pot cooking      (via sciencedaily.com)     Original source 

Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Ionic liquids: 'Don't shake it'      (via sciencedaily.com)     Original source 

Chemists have develop innovative ionic liquid synthesis and purification technology.

Biology: Botany
Published

Wastewater is a viable medium for growing lettuce in hydroponic systems      (via sciencedaily.com)     Original source 

Urban agriculture has the potential to improve food security through local, efficient, and sustainable food production. Examples of urban food systems include hydroponics, where plants grow in a nutrient solution without soil, and aquaponics, which combines hydroponics with raising fish in tanks. A new study examines the use of aquaponics wastewater as a growth medium for lettuce in a hydroponic system. This practice can potentially create a circular ecosystem for organic waste recycling and food production.

Chemistry: Inorganic Chemistry Physics: General
Published

Scientists discover way to 'grow' sub-nanometer sized transistors      (via sciencedaily.com)     Original source 

A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize an improved building block for medicines      (via sciencedaily.com)     Original source 

Research could help drug developers improve the safety profiles of medications and reduce side effects.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Mechanism of bio-inspired control of liquid flow      (via sciencedaily.com)     Original source 

The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials      (via sciencedaily.com)     Original source 

In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors      (via sciencedaily.com)     Original source 

A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Microbiology Ecology: Endangered Species Ecology: General Ecology: Research Ecology: Sea Life Environmental: Ecosystems
Published

Study illuminates cues algae use to 'listen' to their environment      (via sciencedaily.com)     Original source 

New research shows how a small group of single-celled algae are able to use chemical cues to communicate stress information. Understanding this ability, once thought unique to plants, helps illuminate the complex evolutionary history of plants and algae.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Melanin from cuttlefish ink as a sustainable biomass resource      (via sciencedaily.com)     Original source 

Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.

Biology: Botany Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

This desert moss has the potential to grow on Mars      (via sciencedaily.com)     Original source 

The desert moss Syntrichia caninervis is a promising candidate for Mars colonization thanks to its extreme ability to tolerate harsh conditions lethal to most life forms. The moss is well known for its ability to tolerate drought conditions, but researchers now report that it can also survive freezing temperatures as low as 196 C, high levels of gamma radiation, and simulated Martian conditions involving these three stressors combined. In all cases, prior dehydration seemed to help the plants cope.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Synthetic fuels and chemicals from CO2: Ten experiments in parallel      (via sciencedaily.com)     Original source 

Why do just one experiment at a time when you can do ten? Researchers have developed an automated system, which allows them to research catalysts, electrodes, and reaction conditions for CO2 electrolysis up to ten times faster. The system is complemented by an open-source software for data analysis.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New materials: Synthetic pathway for promising nitride compounds discovered      (via sciencedaily.com)     Original source 

Chemists have successfully synthesized Ruddlesden-Popper nitrides for the first time, opening the door to new materials with unique properties.