Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Energy: Batteries
Published Researchers identify peptides for pollen tube growth in rice



Rapid alkalinization factors (RALFs) are required for pollen tube germination and elongation, an essential process in plant fertilization. But their role in monocot plants remains unexplored. Scientists have now identified OsRALF17 and OsRALF19 in rice and determined their functions in pollen tube germination and growth. This study provides novel insights into the role of RALFs in rice fertilization, paving the way for enhanced grain yield.
Published The oldest and fastest evolving moss in the world might not survive climate change



A 390-million-year-old moss called Takakia lives in some of Earth's most remote places, including the icy cliffs of the Tibetan Plateau. In a decade-long project, a team of scientists climbed some of the tallest peaks in the world to find Takakia, sequence its DNA for the first time, and study how climate change is impacting the moss. Their results show that Takakia is one of the fastest evolving species ever studied -- but it likely isn't evolving fast enough to survive climate change.
Published Potential novel breakthrough treatment for fungal infections



Fungal infections are killing thousands of Americans each year, some with a morbidity rate of nearly 80%. To make matters worse, only a handful of antifungal treatments are available, and even those are becoming less effective as fungi become more resistant. However, researchers recently published findings indicating that a novel breakthrough treatment may have been discovered.
Published Faster thin film devices for energy storage and electronics


An international research team reported the first realization of single-crystalline T-Nb2O5 thin films having two-dimensional (2D) vertical ionic transport channels, which results in a fast and colossal insulator-metal transition via Li ion intercalation through the 2D channels.
Published Cracking in lithium-ion batteries speeds up electric vehicle charging


Rather than being solely detrimental, cracks in the positive electrode of lithium-ion batteries reduce battery charge time, research shows. This runs counter to the view of many electric vehicle manufacturers, who try to minimize cracking because it decreases battery longevity.
Published Energy-storing supercapacitor from cement, water, black carbon


Engineers have created a 'supercapacitor' made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.
Published Solar batteries: New material makes it possible to simultaneously absorb light and store energy


Researchers are making progress on the design of a solar battery made from an abundant, non-toxic and easily synthesized material composed of 2D carbon nitride.
Published Going the distance for better wireless charging


Accounting for radiation loss is the key to efficient wireless power transfer over long distances.
Published Aluminum materials show promising performance for safer, cheaper, more powerful batteries


Researchers are using aluminum foil to create batteries with higher energy density and greater stability. The team's new battery system could enable electric vehicles to run longer on a single charge and would be cheaper to manufacture -- all while having a positive impact on the environment.
Published Current thinking on batteries overturned by cathode oxidation research


Scientists have made a significant breakthrough in understanding and overcoming the challenges associated with Ni-rich cathode materials used in lithium-ion batteries.
Published Dry manufacturing process offers path to cleaner, more affordable high-energy EV batteries


Early experiments have revealed significant benefits to a dry battery manufacturing process. This eliminates the use of toxic solvents while showing promise for delivering a battery that is durable, less weighed down by inactive elements and able to maintain high energy storage capacity after use. Such improvements could boost wider EV adoption, helping to reduce carbon emissions and achieve U.S. climate goals.
Published Next-generation flow battery design sets records


A new flow battery design achieves long life and capacity for grid energy storage from renewable fuels.
Published New design rule for high-entropy superionic solid-state conductors


Solid electrolytes with high lithium-ion conductivity can be designed for millimeter-thick battery electrodes by increasing the complexity of their composite superionic crystals, report researchers from Tokyo Tech. This new design rule enables the synthesis of high-entropy active materials while preserving their superionic conduction.
Published Nanosheet technology developed to boost energy storage dielectric capacitors


A research group has used nanosheet technology to develop a dielectric capacitor for advanced electronic and electrical power systems. Innovations in energy storage technology are vital for the effective use of renewable energy and the mass production of electric vehicles. The capacitor has the highest energy storage density recorded. It has a short charging time, high output, long life, and high temperature stability, making it a major advancement in technology.
Published New aluminium radical battery promises more sustainable power


Scientists are hoping to make the world's first safe and efficient non-toxic aqueous aluminum radical battery. Scientists have now reported the first stage of developing these novel batteries.
Published Neutrons look inside working solid-state battery to discover its key to success



Researchers have used neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry. They discovered that its excellent performance results from an extremely thin layer, across which charged lithium atoms quickly flow as they move from anode to cathode and blend into a solid electrolyte.
Published An ingredient in toothpaste may make electric cars go farther



Scientists have developed a fluoride-containing electrolyte for lithium metal batteries that could boost the electric vehicle industry. The usefulness of this electrolyte extends to other types of advanced battery systems beyond lithium ion.
Published Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts



CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.
Published Dry days trigger leaves to send a surprising growth signal telling roots to keep growing



Scientists have discovered a new molecular signalling pathway, triggered when leaves are exposed to low humidity, that ensures plant roots keep growing towards water. A new study has found that when the leaves of a plant are exposed to dry air (low humidity), they send a shoot-to-root signal, using abscisic acid (ABA), to tell the roots to keep growing. This is a surprising finding as ABA is usually thought to be a growth inhibitor, not a growth promoter.
Published The clue is in the glue -- Nature's secret for holding it together



An obscure aquatic plant has helped to explain how plants avoid cracking up under the stresses and strains of growth.