Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Energy: Batteries

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology
Published

A 'liquid battery' advance      (via sciencedaily.com)     Original source 

A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Ecology: Endangered Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Are plants intelligent? It depends on the definition      (via sciencedaily.com)     Original source 

Goldenrod can perceive other plants nearby without ever touching them, by sensing far-red light ratios reflected off leaves. When goldenrod is eaten by herbivores, it adapts its response based on whether or not another plant is nearby. Is this kind of flexible, real-time, adaptive response a sign of intelligence in plants?

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Scientists engineer yellow-seeded camelina with high oil output      (via sciencedaily.com)     Original source 

Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Microbiology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Soil bacteria respire more CO2 after sugar-free meals      (via sciencedaily.com)     Original source 

Researchers tracked how plant matter moves through bacteria's metabolism. Microbes respire three times as much carbon dioxide (CO2) from non-sugar carbons from lignin compared to sugar from cellulose. Although microbes consume both types of plant matter at the same time, each type enters a different metabolic pathway. Findings could improve predictions of how climate-dependent changes in soil carbon types will affect microbial CO2 production.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Energy: Alternative Fuels Energy: Technology Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Algae offer real potential as a renewable electricity source      (via sciencedaily.com)     Original source 

The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Looking for a new battery platform? Focus on the essentials      (via sciencedaily.com)     Original source 

In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.

Biology: Biochemistry Biology: Botany Biology: General Biology: Genetics Environmental: General
Published

Fine-tuning leaf angle with CRISPR improves sugarcane yield      (via sciencedaily.com)     Original source 

A CABBI research team has used CRISPR/Cas9 gene editing to optimize leaf angle in sugarcane, increasing the amount of sunlight it captures and the amount of biomass it produces.

Biology: Botany Ecology: Trees Environmental: General Geoscience: Environmental Issues
Published

Early life exposure to weed pollen could increase childhood asthma risk      (via sciencedaily.com)     Original source 

A study has found children who are exposed to tree and weed pollen in urban environments are at increased risk of respiratory health problems, including asthma. While green areas in urban settings decrease exposure to air pollution, allow kids to be active, and offer positive contact to a diverse microbiota -- which in turn may help the positive development of a child's immune system -- they can also lead to the development of childhood asthma. Thankfully, trees can help mitigate this effect to some degree, thanks to their canopy.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Ecology: Endangered Species
Published

Changes Upstream: RIPE team uses CRISPR/Cas9 to alter photosynthesis for the first time      (via sciencedaily.com)     Original source 

Scientists used CRISPR/Cas9 to increase gene expression in rice by changing its upstream regulatory DNA. While other studies have used the technology to knock out or decrease the expression of genes, this study, is an unbiased gene-editing approach to increase gene expression and downstream photosynthetic activity. The approach is more difficult than transgenic breeding, but could potentially preempt regulatory issues by changing DNA already within the plant, allowing the plants to get in the hands of farmers sooner.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Chemistry: Biochemistry Ecology: Endangered Species Engineering: Nanotechnology Engineering: Robotics Research
Published

Better farming through nanotechnology      (via sciencedaily.com)     Original source 

Advanced technologies enable the controlled release of medicine to specific cells in the body. Scientists argue these same technologies must be applied to agriculture if growers are to meet increasing global food demands.

Biology: Botany Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Uptake of tire wear additives by vegetables grown for human consumption      (via sciencedaily.com)     Original source 

Car tires contain hundreds of chemical additives that can leach out of them. This is how they end up in crops and subsequently in the food chain. Researchers have now detected these chemical residues in leafy vegetables for the first time. Although the concentrations were low, the evidence was clear, a finding that is also known for drug residues in plant-based foods.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Electrified charcoal 'sponge' can soak up CO2 directly from the air      (via sciencedaily.com)     Original source 

Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air. Researchers used a method similar to charging a battery to instead charge activated charcoal, which is often used in household water filters.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Endangered Species Ecology: Invasive Species
Published

Frequent mowing puts poisonous weed into survival mode      (via sciencedaily.com)     Original source 

A study has found that frequent mowing of Solanum elaeagnifolium, also known as silverleaf nightshade, may help create a 'superweed.' A professor of entomology and plant pathology has been studying silverleaf nightshade for more than a decade. New findings have shown that the more silverleaf nightshade was mowed, the more it developed ways to avoid destruction. The taproot went down further, nearly 5 feet deep, in the first generation of mowed plants. More spikes popped out on the stem as a defense against caterpillars feeding on the flowers. The flowers became more toxic to caterpillars, leading to less pressure from natural predators.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Genetics Ecology: Endangered Species Ecology: Nature Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Key nutrients help plants beat the heat      (via sciencedaily.com)     Original source 

Scientists have discovered some of the molecular mechanisms controlling how plants -- including important crops like soybean and rice -- will respond to rising global temperatures, finding higher temperatures make root systems grow faster, but sustaining this increased growth speed depends on high levels of nitrogen and phosphorus in the soil. The discoveries point to the necessity of nitrogen and phosphorus-rich soil to promote crop growth and create nutritious crops, in addition to aiding a mission to create more resilient crops in the face of climate change.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Research
Published

Tracing the evolution of ferns' surprisingly sweet defense strategy      (via sciencedaily.com)     Original source 

Plants and the animals that eat them have evolved together in fascinating ways, creating a dynamic interplay of survival strategies. Many plants have developed physical and chemical defenses to fend off herbivores. A well-known strategy in flowering plants is to produce nectar to attract 'ant bodyguards.' Recent research explores the evolution of this same defense strategy in ferns.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Geoscience: Geochemistry
Published

Researchers expose new symbiosis origin theories, identify experimental systems for plant life      (via sciencedaily.com)     Original source 

Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

What makes some plant groups so successful?      (via sciencedaily.com)     Original source 

Researchers involved in cataloguing the world's plant species are hunting for answers as to what makes some groups of plants so successful. One of their major goals is to predict more accurately which lineages of flowering plants -- some of which are of huge importance to people and to ecosystems -- are at a greater risk from global climate change.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Polymeric films protect anodes from sulfide solid electrolytes      (via sciencedaily.com)     Original source 

Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species
Published

Scientists identify gene that could lead to resilient 'pixie' corn      (via sciencedaily.com)     Original source 

A widely found gene in plants has been newly identified as a key transporter of a hormone that influences the size of corn. The discovery offers plant breeders a new tool to develop desirable dwarf varieties that could enhance the crop's resilience and profitability.