Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Engineering: Biometric
Published Altering the circadian clock adapts barley to short growing seasons



To ensure that plants flower at the right time of year, they possess an internal clock, which enables them to measure the amount of daylight during a day. Biologists now describe that the mutation of a specific gene makes the flowering time of barley almost entirely independent of day length. This mutation can be useful for breeding varieties adapted to altered climatic conditions with relatively mild winters and hot, dry summers.
Published Modeling tree masting



The effects of a phenomenon called tree masting on ecosystems and food webs can be better understood thanks to new theoretical models validated by real world observations.
Published 'The future is fungal': New research finds that fungi that live in healthy plants are sensitive to climate change



Findings more than a decade in the making reveal a rich diversity of beneficial fungi living in boreal forest trees, with implications for the health of forests.
Published Photosynthetic mechanism of purple sulfur bacterium adapted to low-calcium environments



Purple sulfur bacteria (PSB) convert light energy into chemical energy through photosynthesis. Interestingly, certain species can photosynthesize even in environments with low-calcium levels. Using cryo-electron microscopy, researchers unveiled the structure of light-harvesting complexes and elucidated the mechanism that facilitates photosynthesis under low-calcium conditions.
Published Pollinator's death trap turns into nursery



In a group of plants that is famous for luring its pollinators into a death trap, one species offers its flowers as a nursery in exchange. The discovery blurs the line between mutualism and parasitism and sheds light on the evolution of complex plant-insect interactions.
Published This tiny, tamper-proof ID tag can authenticate almost anything



A cryptographic tag uses terahertz waves to authenticate items by recognizing the unique pattern of microscopic metal particles that are mixed into the glue that sticks the tag to the item's surface.
Published Reforestation programs could threaten vast area of tropical grasslands



New research reveals the scale of inappropriate reforestation projects across Africa. A new study reveals that an area the size of France is threatened by forest restoration initiatives, such as the AFR100 initiative (African Forest Landscape Restoration Initiative), due to inappropriate restoration in the form of tree-planting.
Published Researchers shed light on river resiliency to flooding



Researchers have completed one of the most extensive river resilience studies, examining how river ecosystems recover following floods. They developed a novel modeling approach that used data from oxygen sensors placed in rivers to estimate daily growth in aquatic plants and algae. The researchers then modeled the algal and plant biomass in 143 rivers across the contiguous U.S. to quantify what magnitude of flooding disturbs the biomass and how long the rivers take to recover from floods. Increased understanding of rivers' resiliency is important to maintaining healthy rivers, as human actions can affect flood regimes and change the conditions in rivers for other aquatic life that may rely on algae and plants as a food source.
Published Asexual propagation of crop plants gets closer



When the female gametes in plants become fertilized, a signal from the sperm activates cell division, leading to the formation of new plant seeds. This activation can also be deliberately triggered without fertilization, as researchers have shown. Their findings open up new avenues for the asexual propagation of crop plants.
Published Root microbes may be the secret to a better tasting cup of tea



You'd think the complex flavor in a quality cup of tea would depend mainly on the tea varieties used to make it. But a new study shows that the making of a delicious cup of tea depends on another key ingredient: the collection of microbes found on tea roots. By altering that assemblage, the authors showed that they could make good-quality tea even better.
Published Scientists are unravelling the secrets of red and grey squirrel competition



Researchers have identified significant differences between the diversity of gut bacteria in grey squirrels compared to red squirrels which could hold the key to further understanding the ability of grey squirrels to outcompete red squirrels in the UK.
Published Researchers uncover mechanisms behind enigmatic shapes of nuclei



White blood cells known as neutrophils feature a nucleus that is structured strikingly different than most nuclei. These unique shapes permit neutrophils to travel all over the body to combat invading pathogens. Scientists have now deciphered the shapeshifting puzzle of the neutrophil nucleus.
Published Pesticides to help protect seeds can adversely affect earthworms' health



While pesticides protect crops from hungry animals, pesky insects, or even microbial infections, they also impact other vital organisms, including bees and earthworms. And today, research reveals that worms are affected by the relatively small amounts of chemicals that can leach out of pesticide-treated seeds. Exposure to nonlethal amounts of these insecticides and fungicides resulted in poor weight gain and mitochondrial DNA (mtDNA) damage in the worms.
Published Controlling root growth direction could help save crops and mitigate climate change



Scientists have determined how the well-known plant hormone ethylene is crucial in controlling the angle at which roots grow. The findings can be used to engineer plants and crops that withstand the environmental stresses of climate change and drought, and perhaps to create plants that remove carbon dioxide from the atmosphere and store it deep underground to help mitigate climate change.
Published Researchers uncover a key link in legume plant-bacteria symbiosis



Researchers have unveiled a groundbreaking discovery shedding light on the intricate play between legume plants and nitrogen-fixing bacteria. Their study details the crucial role played by phosphorylation in driving the formation of symbiotic organs, known as nodules, on plant roots. The long-term goal is to enable symbiosis in root nodules in important crops such as barley, maize and rice to avoid the use of chemical fertilizers.
Published Foul fumes pose pollinator problems



Scientists have discovered that nighttime air pollution -- coming primarily form car exhaust and power plant emissions -- is responsible for a major drop in nighttime pollinator activity. Nitrate radicals (NO3) in the air degrade the scent chemicals released by a common wildflower, drastically reducing the scent-based cues that its chief pollinators rely on to locate the flower. The findings show how nighttime pollution creates a chain of chemical reactions that degrades scent cues, leaving flowers undetectable by smell. The researchers also determined that pollution likely has worldwide impacts on pollination.
Published Friend or foe? Ancient partnership between moss and fungi



Researchers have shed new light on the ancient relationship between moss and fungi. They discovered that intricate moss-fungi interactions often depended on a third variable -- the presence of endobacteria within the fungi themselves.
Published Inexpensive, carbon-neutral biofuels are finally possible



When it comes to making fuel from plants, the first step has always been the hardest -- breaking down the plant matter. A new study finds that introducing a simple, renewable chemical to the pretreatment step can finally make next-generation biofuel production both cost-effective and carbon neutral.
Published Researchers discover key to molecular mystery of how plants respond to changing conditions



A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.
Published How plants obtain nitrogen by supplying iron to symbiotic bacteria



Researchers have discovered peptide factors that function in the shoot and root systems to transport iron into the root nodules colonized by nitrogen-fixing bacteria. Moreover, these peptide factors regulate nitrogen homeostasis by maintaining a balance between nitrogen and iron concentrations in plants without rhizobial symbiosis.