Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Engineering: Robotics Research
Published A non-allergenic wheat protein for growing better cultivated meat



As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.
Published Moth keeps a firm eye on the proboscis



Just as when we humans reach for objects, the hummingbird hawk moth uses its visual sense to place its long proboscis precisely on a flower to search for nectar, according to biologists. This is why the moth is a great model organism for research into the visual control of appendages.
Published Back from the dead: Tropical tree fern repurposes its dead leaves



Plant biologists report that a species of tree fern found only in Panama reanimates its own dead leaf fronds, converting them into root structures that feed the mother plant. The fern, Cyathea rojasiana, reconfigures these 'zombie leaves,' reversing the flow of water to draw nutrients back into the plant.
Published Robot trained to read braille at twice the speed of humans



Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.
Published Utilizing active microparticles for artificial intelligence



Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists have now created a type of neural network that works not with electricity but with so-called active colloidal particles.The researchers describe how these microparticles can be used as a physical system for artificial intelligence and the prediction of time series.
Published Soap bark discovery offers a sustainability booster for the global vaccine market



A valuable molecule sourced from the soapbark tree and used as a key ingredient in vaccines, has been replicated in an alternative plant host for the first time, opening unprecedented opportunities for the vaccine industry.
Published Use it or lose it: How seagrasses conquered the sea



Seagrasses provide the foundation of one of the most highly biodiverse, yet vulnerable, coastal marine ecosystems globally. They arose in three independent lineages from their freshwater ancestors some 100 million years ago and are the only fully submerged, marine flowering plants. Moving to such a radically different environment is a rare evolutionary event and definitely not easy. How did they do it? New reference quality genomes provide important clues with relevance to their conservation and biotechnological application.
Published Scientists design a two-legged robot powered by muscle tissue



Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. This method allows the robot to walk and pivot.
Published Autonomous synthesis robot uses AI to speed up chemical discovery



Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.
Published Tiny ant species disrupts lion's hunting behavior



Data gathered through years of observation reveal an innocuous-seeming ant is disrupting an ecosystem in East Africa, illustrating the complex web of interactions among ants, trees, lions, zebras and buffaloes.
Published The underground network: Decoding the dynamics of plant-fungal symbiosis



The intricate dance of nature often unfolds in mysterious ways, hidden from the naked eye. At the heart of this enigmatic tango lies a vital partnership: the symbiosis between plants and a type of fungi known as arbuscular mycorrhizal (AM) fungi. New groundbreaking research delves into this partnership, revealing key insights that deepen our understanding of plant-AM fungi interactions and could lead to advances in sustainable agriculture.
Published Diverse forests are best at standing up to storms



European forests with a greater diversity of tree species are more resilient to storms, according to new research.
Published The complexity of forests cannot be explained by simple mathematical rules, study finds



The way trees grow together do not resemble how branches grow on a single tree, scientists have discovered.
Published 'Talking' tomatoes: How their communication is influenced by enemies and friends



Plants produce a range of chemicals known as volatile organic compounds that influence their interactions with the world around them. In a new study, researchers investigated how the type and amount of these VOCs change based on different features of tomato plants.
Published World's largest database of weeds lets scientists peer into the past, and future, of global agriculture



A new database of weeds that can help scientists understand how traditional agricultural systems were managed throughout history, could also provide insights into how global trends like the climate crisis could affect the resilience of our modern day food systems.
Published Study offers rare long-term analysis of techniques for creating standing dead trees for wildlife habitat



Ecologists have long known that standing dead trees, commonly referred to as snags, are an important habitat element for forest dwellers and act as a driver of biodiversity. They're so important that in some managed forests, snag creation is part of the conservation tool kit -- i.e., crews sometimes convert a percentage of live trees into dead ones through techniques ranging from sawing off their tops to wounding their trunks to injecting them with disease-causing fungi.
Published Innovative tech shows promise to boost rubber production in US



With disease and high demand posing threats to the world's primary natural rubber supply in Southeast Asia, scientists are working to ramp up the U.S. rubber market by advancing methods to extract latex from two sustainable North American plant sources: a dandelion species and a desert shrub.
Published Complex green organisms emerged a billion years ago



Of all the organisms that photosynthesize, land plants have the most complex form. How did this morphology emerge? A team of scientists has taken a deep dive into the evolutionary history of morphological complexity in streptophytes, which include land plants and many green algae. Their research allowed them to go back in time to investigate lineages that emerged long before land plants existed.
Published A window into plant evolution: The unusual genetic journey of lycophytes



An international team of researchers has uncovered a remarkable genetic phenomenon in lycophytes, which are similar to ferns and among the oldest land plants. Their study reveals that these plants have maintained a consistent genetic structure for over 350 million years, a significant deviation from the norm in plant genetics.
Published Mini-robots modeled on insects may be smallest, lightest, fastest ever developed



Two insect-like robots, a mini-bug and a water strider may be the smallest, lightest and fastest fully functional micro-robots ever known to be created. Such miniature robots could someday be used for work in areas such as artificial pollination, search and rescue, environmental monitoring, micro-fabrication or robotic-assisted surgery. Reporting on their work in the proceedings of the IEEE Robotics and Automation Society's International Conference on Intelligent Robots and Systems, the mini-bug weighs in at eight milligrams while the water strider weighs 55 milligrams. Both can move at about six millimeters a second.