Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Engineering: Nanotechnology

Return to the site home page

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Uncovering the nature of emergent magnetic monopoles      (via sciencedaily.com)     Original source 

To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Ecology: Endangered Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Are plants intelligent? It depends on the definition      (via sciencedaily.com)     Original source 

Goldenrod can perceive other plants nearby without ever touching them, by sensing far-red light ratios reflected off leaves. When goldenrod is eaten by herbivores, it adapts its response based on whether or not another plant is nearby. Is this kind of flexible, real-time, adaptive response a sign of intelligence in plants?

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species
Published

Scientists engineer yellow-seeded camelina with high oil output      (via sciencedaily.com)     Original source 

Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Microbiology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Soil bacteria respire more CO2 after sugar-free meals      (via sciencedaily.com)     Original source 

Researchers tracked how plant matter moves through bacteria's metabolism. Microbes respire three times as much carbon dioxide (CO2) from non-sugar carbons from lignin compared to sugar from cellulose. Although microbes consume both types of plant matter at the same time, each type enters a different metabolic pathway. Findings could improve predictions of how climate-dependent changes in soil carbon types will affect microbial CO2 production.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Energy: Alternative Fuels Energy: Technology Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

Algae offer real potential as a renewable electricity source      (via sciencedaily.com)     Original source 

The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.

Biology: Biochemistry Biology: Botany Biology: General Biology: Genetics Environmental: General
Published

Fine-tuning leaf angle with CRISPR improves sugarcane yield      (via sciencedaily.com)     Original source 

A CABBI research team has used CRISPR/Cas9 gene editing to optimize leaf angle in sugarcane, increasing the amount of sunlight it captures and the amount of biomass it produces.

Biology: Botany Ecology: Trees Environmental: General Geoscience: Environmental Issues
Published

Early life exposure to weed pollen could increase childhood asthma risk      (via sciencedaily.com)     Original source 

A study has found children who are exposed to tree and weed pollen in urban environments are at increased risk of respiratory health problems, including asthma. While green areas in urban settings decrease exposure to air pollution, allow kids to be active, and offer positive contact to a diverse microbiota -- which in turn may help the positive development of a child's immune system -- they can also lead to the development of childhood asthma. Thankfully, trees can help mitigate this effect to some degree, thanks to their canopy.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Splitting hairs: Science of biomechanics to understand of bad hair days      (via sciencedaily.com)     Original source 

Academics are often accused of 'splitting hairs', but a team has now devised a machine to do just that. We all have a bad hair day from time to time, and split ends are a common problem. However, the science behind this kind of hair damage is poorly understood, which is why scientists are investigating this knotty problem.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Ecology: Endangered Species
Published

Changes Upstream: RIPE team uses CRISPR/Cas9 to alter photosynthesis for the first time      (via sciencedaily.com)     Original source 

Scientists used CRISPR/Cas9 to increase gene expression in rice by changing its upstream regulatory DNA. While other studies have used the technology to knock out or decrease the expression of genes, this study, is an unbiased gene-editing approach to increase gene expression and downstream photosynthetic activity. The approach is more difficult than transgenic breeding, but could potentially preempt regulatory issues by changing DNA already within the plant, allowing the plants to get in the hands of farmers sooner.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Nanoparticles: Risk for babies in the womb      (via sciencedaily.com)     Original source 

Little is yet known about the health effects of nanoparticles on pregnancy. An interdisciplinary team is currently analyzing the risks for babies in the womb. Using a lab model, the researchers were able to determine that certain nanoparticles impair the release of chemical messengers in the placenta and thus the formation of blood vessels.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Chemistry: Biochemistry Ecology: Endangered Species Engineering: Nanotechnology Engineering: Robotics Research
Published

Better farming through nanotechnology      (via sciencedaily.com)     Original source 

Advanced technologies enable the controlled release of medicine to specific cells in the body. Scientists argue these same technologies must be applied to agriculture if growers are to meet increasing global food demands.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Crystal engineering modifies 2D metal halide perovskites into 1D nanowires      (via sciencedaily.com)     Original source 

Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.

Biology: Botany Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Uptake of tire wear additives by vegetables grown for human consumption      (via sciencedaily.com)     Original source 

Car tires contain hundreds of chemical additives that can leach out of them. This is how they end up in crops and subsequently in the food chain. Researchers have now detected these chemical residues in leafy vegetables for the first time. Although the concentrations were low, the evidence was clear, a finding that is also known for drug residues in plant-based foods.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Towards next-gen functional materials: direct observation of electron transfer in solids      (via sciencedaily.com)     Original source 

Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Shining a light on molecules: L-shaped metamaterials can control light direction      (via sciencedaily.com)     Original source 

Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Endangered Species Ecology: Invasive Species
Published

Frequent mowing puts poisonous weed into survival mode      (via sciencedaily.com)     Original source 

A study has found that frequent mowing of Solanum elaeagnifolium, also known as silverleaf nightshade, may help create a 'superweed.' A professor of entomology and plant pathology has been studying silverleaf nightshade for more than a decade. New findings have shown that the more silverleaf nightshade was mowed, the more it developed ways to avoid destruction. The taproot went down further, nearly 5 feet deep, in the first generation of mowed plants. More spikes popped out on the stem as a defense against caterpillars feeding on the flowers. The flowers became more toxic to caterpillars, leading to less pressure from natural predators.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Genetics Ecology: Endangered Species Ecology: Nature Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Key nutrients help plants beat the heat      (via sciencedaily.com)     Original source 

Scientists have discovered some of the molecular mechanisms controlling how plants -- including important crops like soybean and rice -- will respond to rising global temperatures, finding higher temperatures make root systems grow faster, but sustaining this increased growth speed depends on high levels of nitrogen and phosphorus in the soil. The discoveries point to the necessity of nitrogen and phosphorus-rich soil to promote crop growth and create nutritious crops, in addition to aiding a mission to create more resilient crops in the face of climate change.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Scientists develop 'x-ray vision' technique to see inside crystals      (via sciencedaily.com)     Original source 

A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.

Engineering: Nanotechnology Physics: Optics
Published

Development of revolutionary color-tunable photonic devices      (via sciencedaily.com)     Original source 

Team develops a flexible and stretchable device capable of omnidirectional color wavelength control.

Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Physics: Acoustics and Ultrasound
Published

Enhancing nanofibrous acoustic energy harvesters with artificial intelligence      (via sciencedaily.com)     Original source 

Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.