Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Engineering: Nanotechnology

Return to the site home page

Energy: Technology Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues
Published

Controlling ion transport for a blue energy future      (via sciencedaily.com)     Original source 

Researchers probed the transit of cations across a nanopore membrane for the generation of osmotic energy. The team controlled the passage of cations across the membrane using a voltage applied to a gate electrode. This control allowed the cation-selective transport to be tuned from essentially zero to complete cation selectivity. The findings are expected to support the application of blue energy solutions for sustainable energy alternatives worldwide.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Research
Published

Tracing the evolution of ferns' surprisingly sweet defense strategy      (via sciencedaily.com)     Original source 

Plants and the animals that eat them have evolved together in fascinating ways, creating a dynamic interplay of survival strategies. Many plants have developed physical and chemical defenses to fend off herbivores. A well-known strategy in flowering plants is to produce nectar to attract 'ant bodyguards.' Recent research explores the evolution of this same defense strategy in ferns.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Geoscience: Geochemistry
Published

Researchers expose new symbiosis origin theories, identify experimental systems for plant life      (via sciencedaily.com)     Original source 

Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

What makes some plant groups so successful?      (via sciencedaily.com)     Original source 

Researchers involved in cataloguing the world's plant species are hunting for answers as to what makes some groups of plants so successful. One of their major goals is to predict more accurately which lineages of flowering plants -- some of which are of huge importance to people and to ecosystems -- are at a greater risk from global climate change.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species
Published

Scientists identify gene that could lead to resilient 'pixie' corn      (via sciencedaily.com)     Original source 

A widely found gene in plants has been newly identified as a key transporter of a hormone that influences the size of corn. The discovery offers plant breeders a new tool to develop desirable dwarf varieties that could enhance the crop's resilience and profitability.

Biology: Biochemistry Biology: Botany Chemistry: Biochemistry Ecology: Endangered Species Ecology: Nature Energy: Technology
Published

Harnessing green energy from plants depends on their circadian rhythms      (via sciencedaily.com)     Original source 

Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.

Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species Ecology: Nature
Published

Transgenic expression of rubisco factors increases photosynthesis and chilling tolerance in maize      (via sciencedaily.com)     Original source 

Maize is one of the world's most widely grown crops and is essential to global food security. But like other plants, its growth and productivity can be limited by the slow activity of Rubisco, the enzyme responsible for carbon assimilation during photosynthesis. Scientists have now demonstrated a promising approach to enhancing Rubisco production, thus improving photosynthesis and overall plant growth.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Controlling water, transforming greenhouse gases      (via sciencedaily.com)     Original source 

Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How a tiny device could lead to big physics discoveries and better lasers      (via sciencedaily.com)     Original source 

Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

Biology: Biochemistry Biology: Botany Biology: Genetics Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals
Published

Key role of plant-bacteria communication for the assembly of a healthy plant microbiome supporting sustainable plant nutrition      (via sciencedaily.com)     Original source 

In an interdisciplinary study, researchers discovered that symbiotic bacteria communicate with legume plants through specific molecules and that this communication influences which bacteria grow near the plant roots. The findings provide insights into how plants and soil bacteria form beneficial partnerships for nutrient uptake and resilience. These results are a step towards understanding how communication between plants and soil bacteria can lead to specific beneficial associations providing plants with nutrients.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Acoustics and Ultrasound
Published

Wearable ultrasound patch enables continuous, non-invasive monitoring of cerebral blood flow      (via sciencedaily.com)     Original source 

Engineers have developed a wearable ultrasound patch that can offer continuous, non-invasive monitoring of blood flow in the brain. The soft and stretchy patch can be comfortably worn on the temple to provide three-dimensional data on cerebral blood flow--a first in wearable technology.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Under extreme impacts, metals get stronger when heated, study finds      (via sciencedaily.com)     Original source 

Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Quantum Computing
Published

Strings that can vibrate forever (kind of)      (via sciencedaily.com)     Original source 

Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Recycling carbon dioxide into household chemicals      (via sciencedaily.com)     Original source 

Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.

Anthropology: Cultures Anthropology: General Biology: Botany Ecology: Invasive Species
Published

Legacy of Indigenous stewardship of camas dates back more than 3,500 years      (via sciencedaily.com)     Original source 

A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.

Biology: Botany Biology: General Biology: Microbiology Ecology: Endangered Species
Published

How plants 'mate' for life and repel other suitors      (via sciencedaily.com)     Original source 

Researchers have used a unique microscopic technique to examine the dynamics of pollen tubes in the Arabidopsis plant. They were able to observe the mechanism of one-to-one pollen tube guidance, a process that ensures successful pollination of plants. This process is influenced by multi-step repelling and attracting signals. The results are important for the cultivation of crops, especially under unfavorable environmental conditions.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Biology: Biochemistry Biology: Botany Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Severe Weather
Published

The impacts of climate change on food production      (via sciencedaily.com)     Original source 

A new study shows that climate change has led to decreased pollen production from plants and less pollen diversity than previously thought, which could have a significant impact on food production.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.