Showing 20 articles starting at article 861

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Engineering: Nanotechnology

Return to the site home page

Biology: Botany Biology: Evolutionary Ecology: Animals Ecology: Endangered Species Ecology: General Ecology: Nature Ecology: Research
Published

Bigger flowers, greater rewards: Plants adapt to climate disruptions to lure pollinators      (via sciencedaily.com) 

There's been a well-documented shift toward earlier springtime flowering in many plants as the world warms. The trend alarms biologists because it has the potential to disrupt carefully choreographed interactions between plants and the creatures -- butterflies, bees, birds, bats and others -- that pollinate them.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Major advance in super-resolution fluorescence microscopy      (via sciencedaily.com) 

Pushing the MINFLUX technique to higher spatial and temporal precision allows protein dynamics to be observed under physiological conditions.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Engineering: Robotics Research Physics: Optics
Published

Researchers control the degree of twist in nanostructured particles      (via sciencedaily.com) 

Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microneedle-based drug delivery technique for plants      (via sciencedaily.com) 

The agriculture industry is under pressure to adopt sustainable and precise agricultural practices that enable more efficient use of resources due to worsening environmental conditions resulting from climate change, an ever-expanding human population, limited resources, and a shortage of arable land. As a result, developing delivery systems that efficiently distribute micronutrients, pesticides, and antibiotics in crops is crucial to ensuring high productivity and high-quality produce while minimising resource waste. However, current and standard practices for agrochemical application in plants are inefficient. These practices cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure and food contamination.

Biology: Botany Ecology: Animals Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: Biodiversity
Published

Thousands of native plants are unphotographed, and citizen scientists can help fill the gaps      (via sciencedaily.com) 

New research finds almost 4000 Australian plant species have not been photographed before in the wild, which may lead to their extinction.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Molecular
Published

TurboID uncovers new meiotic proteins in Arabidopsis thaliana      (via sciencedaily.com) 

Meiotic recombination assures genetic variation during breeding. During meiotic prophase I, chromosomes are organized in a loop-base array by a proteinaceous structure called meiotic chromosome axis which is critical for meiotic recombination and genetically diverse gametes. An international research team reports the application of a TurboID (TbID)-based approach to identify proteins in proximity of meiotic chromosome axes in Arabidopsis thaliana. Not only known but also new meiotic proteins were uncovered.

Biology: Evolutionary Biology: Microbiology Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scientists transform algae into unique functional perovskites with tunable properties      (via sciencedaily.com) 

Scientists have transformed single-cell algae into functional perovskite materials. The team has converted mineral shells of algae into lead halide perovskites with tunable physical properties. The new perovskites have unique nano-architectures unachievable by conventional synthetic production. The method can be applied to the mass production of perovskites with tunable structural and electro-optical properties from single-celled organisms.

Energy: Technology Engineering: Nanotechnology
Published

Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them      (via sciencedaily.com) 

A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Microscopy: Highest resolution in three dimensions      (via sciencedaily.com) 

Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures      (via sciencedaily.com) 

Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Knots smaller than human hair make materials unusually tough      (via sciencedaily.com) 

A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.

Computer Science: General Energy: Technology Engineering: Nanotechnology Physics: General
Published

New kind of transistor could shrink communications devices on smartphones      (via sciencedaily.com) 

One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.

Biology: Biotechnology Biology: Botany Biology: Microbiology Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature
Published

eDNA holds the key to safeguarding pollinators amid global declines      (via sciencedaily.com) 

Researchers have uncovered new evidence of western pygmy possums interacting with native flowers, providing an eDNA study to simultaneously detect mammal, insect and bird DNA on flowers.

Biology: Botany Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science Geoscience: Environmental Issues
Published

Plant roots fuel tropical soil animal communities      (via sciencedaily.com) 

A research team has shed new light on the importance of plant roots for below-ground life, particularly in the tropics. Millions of small creatures toiling in a single hectare of soil including earthworms, springtails, mites, insects, and other arthropods are crucial for decomposition and soil health. For a long time, it was believed that leaf litter is the primary resource for these animals. However, this recent study is the first to provide proof that resources derived from plant roots drive soil animal communities in the tropics.

Biology: Botany Biology: Developmental Ecology: Endangered Species Ecology: Nature
Published

An internal thermometer tells the seeds when to germinate      (via sciencedaily.com) 

Germination is a crucial stage in the life of a plant as it will leave the stage of seed resistant to various environmental constraints (climatic conditions, absence of nutritive elements, etc.) to become a seedling much more vulnerable. The survival of the young plant depends on the timing of this transition. It is therefore essential that this stage be finely controlled. Botanists have now discovered the internal thermometer of seeds that can delay or even block germination if temperatures are too high for the future seedling. This work could help optimize plant growth in a context of global warming.

Biology: Biotechnology Biology: Botany Biology: Genetics Biology: Microbiology Ecology: Animals Ecology: Endangered Species Geoscience: Environmental Issues
Published

Wheat's ancient roots of viral resistance uncovered      (via sciencedaily.com) 

The DNA sequence of a gene in wheat responsible for resisting a devastating virus has been discovered, providing vital clues for managing more resistant crops and maintaining a healthy food supply.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Biology: Botany Biology: Marine Biology: Microbiology Ecology: Sea Life Environmental: Water Geoscience: Earth Science Geoscience: Geology
Published

Mineral particles and their role in oxygenating the Earth's atmosphere      (via sciencedaily.com) 

Mineral particles played a key role in raising oxygen levels in the Earth's atmosphere billions of years ago, with major implications for the way intelligent life later evolved, according to new research.