Showing 20 articles starting at article 1

Next 20 articles >

Categories: Biology: Botany, Physics: Quantum Physics

Return to the site home page

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional interface superconductor could benefit quantum computing      (via sciencedaily.com)     Original source 

A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Innovative field experiments shed light on biological clocks in nature      (via sciencedaily.com)     Original source 

A new study has used a series of innovative field experiments to show how plants combine circadian clock signals with environmental cues under naturally fluctuating conditions.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Langbeinites show talents as 3D quantum spin liquids      (via sciencedaily.com)     Original source 

A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behavior that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Kagome superconductor makes waves      (via sciencedaily.com)     Original source 

Superconductivity theory proposed by physics team validated in international experiment: Cooper pairs display wave-like distribution in Kagome metals, enabling new technological applications like superconducting diodes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

AI tackles one of the most difficult challenges in quantum chemistry      (via sciencedaily.com)     Original source 

New research using neural networks, a form of brain-inspired AI, proposes a solution to the tough challenge of modelling the states of molecules.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

Physicists shine new light on ultra-fast atomic processes      (via sciencedaily.com)     Original source 

Scientists report incredibly small time delays in a molecule's electron activity when the particles are exposed to X-rays. To measure these tiny high-speed events, known as attoseconds, researchers used a laser to generate intense X-ray flashes that allowed them to map the inner workings of an atom.

Biology: Biochemistry Biology: Botany Biology: Microbiology Ecology: Invasive Species
Published

Honey bees may play key role in spreading viruses to wild bumblebees      (via sciencedaily.com)     Original source 

Honey bees may play a role in increasing virus levels in wild bumble bees each spring, according to researchers who analyzed seasonal trends of parasite and virus transmission in bees.

Biology: Botany Biology: Microbiology Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Pilot study uses recycled glass to grow plants for salsa ingredients      (via sciencedaily.com)     Original source 

Tortilla chips and fresh salsa are tasty, but they could be even more appealing if you grow the ingredients yourself. Now, researchers report that some salsa ingredients -- cilantro, bell pepper and jalapeno -- can be more sustainably cultivated with recycled glass. Their pilot study found that partially substituting soil in a planter with recycled glass fragments speeds up plant development and reduces unwanted fungal growth.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First visualization of valence electrons reveals fundamental nature of chemical bonding      (via sciencedaily.com)     Original source 

The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics
Published

Survival tactics: AI-driven insights into chromatin changes for winter dormancy in axillary buds      (via sciencedaily.com)     Original source 

Epigenetics confers a survival advantage in plants to endure harsh weather by inducing bud dormancy. Environmental factors or intrinsic signals trigger the transition between growth and dormancy. Researchers explore the role of chromatin and transcriptional changes in the bud and further analyze data using artificial intelligence models. The findings of this study highlight epigenetic strategies to overcome the effects of short winters during global warming for plant survival.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

New heaviest exotic antimatter nucleus      (via sciencedaily.com)     Original source 

Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

Explanation found for X-ray radiation from black holes      (via sciencedaily.com)     Original source 

Researchers have succeeded in something that has been pursued since the 1970s: explaining the X-ray radiation from the black hole surroundings. The radiation originates from the combined effect of the chaotic movements of magnetic fields and turbulent plasma gas.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Ecology: Endangered Species Ecology: Nature Offbeat: General Offbeat: Plants and Animals
Published

Researchers uncover the secrets of 'plant puberty'      (via sciencedaily.com)     Original source 

Researchers have identified the genetic changes linked to why plants go through a developmental change similar to 'puberty' at different rates, a discovery which could lead to better crop nutrition.

Physics: General Physics: Quantum Physics
Published

Large Hadron Collider pipe brings search for elusive magnetic monopole closer than ever      (via sciencedaily.com)     Original source 

New research using a decommissioned section of the beam pipe from the Large Hadron Collider (LHC) at CERN has bought scientists closer than ever before to test whether magnetic monopoles exist. Scientists have revealed the most stringent constraints yet on the existence of magnetic monopoles, pushing the boundaries of what is known about these elusive particles.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New insight Into behavior of electrons      (via sciencedaily.com)     Original source 

Physicists have uncovered new states of matter by exploring the behavior of flatland electrons in extreme conditions, revealing insights that could impact quantum computing and advanced materials.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum pumping in molecular junctions      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics.

Biology: Botany Ecology: Endangered Species Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Why do plants wiggle? New study provides answers      (via sciencedaily.com)     Original source 

Decades after his voyage on the HMS Beagle, Charles Darwin became fascinated by why plants move as they grow -- spinning and twisting into corkscrews. Now, more than 150 years later, a new study may have solved the riddle.