Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Physics: Quantum Computing
Published Combining materials may support unique superconductivity for quantum computing



A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Friend or foe? Ancient partnership between moss and fungi



Researchers have shed new light on the ancient relationship between moss and fungi. They discovered that intricate moss-fungi interactions often depended on a third variable -- the presence of endobacteria within the fungi themselves.
Published Inexpensive, carbon-neutral biofuels are finally possible



When it comes to making fuel from plants, the first step has always been the hardest -- breaking down the plant matter. A new study finds that introducing a simple, renewable chemical to the pretreatment step can finally make next-generation biofuel production both cost-effective and carbon neutral.
Published Researchers discover key to molecular mystery of how plants respond to changing conditions



A team of researchers recently published a pioneering study that answers a central question in biology: how do organisms rally a wide range of cellular processes when they encounter a change -- either internally or in the external environment -- to thrive in good times or survive the bad times? The research, focused on plants, identifies the interactions between four compounds: pectin, receptor proteins FERONIA and LLG1 and the signal RALF peptide.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published How plants obtain nitrogen by supplying iron to symbiotic bacteria



Researchers have discovered peptide factors that function in the shoot and root systems to transport iron into the root nodules colonized by nitrogen-fixing bacteria. Moreover, these peptide factors regulate nitrogen homeostasis by maintaining a balance between nitrogen and iron concentrations in plants without rhizobial symbiosis.
Published Two new freshwater fungi species in China enhance biodiversity knowledge



Researchers have discovered two new freshwater hyphomycete (mould) species, Acrogenospora alangii and Conioscypha yunnanensis, in southwestern China. The discovery marks the addition of these species to the Acrogenospora and Conioscypha genera, further enriching the diversity of freshwater fungi known in the region.
Published Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean



The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published Magnesium protects tantalum, a promising material for making qubits



Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.
Published A physical qubit with built-in error correction



Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.
Published Scammed! Animals 'led by the nose' to leave plants alone



Fake news works for wallabies and elephants. Herbivores can cause substantial damage to crops or endangered or protected plants, with traditional methods to deter foraging lethal, expensive or ineffective. Biologists are now using aromas from plants naturally repellent with remarkable success to deter the animals.
Published Rare 3D fossils show that some early trees had forms unlike any you've ever seen



In the fossil record, trees typically are preserved with only their trunks. They don't usually include any leaves to show what their canopies and overall forms may have looked like. In a new study, researchers describe fossilized trees from New Brunswick, Canada with a surprising and unique three-dimensional crown shape.
Published Plant receptors that control immunity and development share a common origin



Researchers have traced the origin and evolutionary trajectory of plant immune receptors. Their discovery will make it easier to identify immune receptor genes from genomic information and could help in the development of pathogen-resistant crops.
Published Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3



Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.
Published Scientists make breakthrough in quantum materials research



Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.
Published 'Tiny tornadoes' around leaves spread deadly plant pathogens



A new study has analyzed plant spore dispersion at its source, where rain droplets shake flexible leaves to initially disperse pathogens.
Published AI-powered app can detect poison ivy



To find poison ivy before it finds you, scientists have published a new study in which they show how they used artificial intelligence to confirm that an app can identify poison ivy. The app is not yet commercially available, nor is there a timetable for it to be available.
Published Researchers craft new way to make high-temperature superconductors -- with a twist



An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Published Superfluids could share characteristic with common fluids



Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.