Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Physics: Quantum Computing
Published Atomic 'GPS' elucidates movement during ultrafast material transitions



Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Quantum sensor for the atomic world



In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear



Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Mixed approach to reforestation better than planting or regeneration alone



Reforestation in low- and middle-income countries can remove up to 10 times more carbon dioxide from the atmosphere at lower cost than previously estimated, making it a potentially more effective option to fight climate change. Most current reforestation programs focus on tree planting alone, but the study estimates that nearly half of all suitable reforestation locations would be more effective at sequestering carbon if forests were allowed to grow back naturally.
Published How well does tree planting work in climate change fight? It depends



Using trees as a cost-effective tool against climate change is more complicated than simply planting large numbers of them, an international collaboration has shown.
Published Trees reveal climate surprise -- bark removes methane from the atmosphere



Tree bark surfaces play an important role in removing methane gas from the atmosphere.
Published Biosensor reveals gibberellin's critical role in legume nitrogen-fixation -- paving the way for self-fertilizing cereals



Researchers demonstrate that the plant hormone gibberellin (GA) is essential for the formation and maturation of nitrogen-fixing root nodules in legumes and can also increase nodule size.
Published Heat-sensitive trees move uphill seeking climate change respite



Trees in the Brazilian Atlantic Forest are migrating in search of more favourable temperatures with species in mountain forests moving uphill to escape rising heat caused by climate change.
Published Groundcherry gets genetic upgrades: Turning a garden curiosity into an agricultural powerhouse



Imagine a small fruit that tastes like a cross between a tomato and a pineapple, wrapped in its own natural paper lantern. That's the groundcherry (Physalis grisea) -- a little-known relative of tomatoes that's been quietly growing in gardens and small farms across North America for centuries. Now, this humble fruit is getting a 21st-century upgrade thanks to some cutting-edge genetic research.
Published Reef pest feasts on 'sea sawdust'



Researchers have uncovered an under the sea phenomenon where coral-destroying crown-of-thorns starfish larvae have been feasting on blue-green algae bacteria known as 'sea sawdust'.
Published Discovery of a hybrid lineage offers clues to how trees adapt to climate change



The discovery of a hybrid population of poplar trees in western Wyoming has provided insight into how natural hybridization informs the evolution of many plant species, according to researchers. They also said their discovery suggests that genetic exchange between species may be critical for adaptation to environmental change.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together



An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory



Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published Scientists use machine learning to predict diversity of tree species in forests



Researchers used machine learning to generate highly detailed maps of over 100 million individual trees from 24 sites across the U.S. These maps provide information about individual tree species and conditions, which can greatly aid conservation efforts and other ecological projects.
Published History shows that humans are good for biodiversity... sometimes



Humans have been an important driver of vegetation change over thousands of years, and, in some places, had positive impacts on biodiversity, according to a new study.
Published Building a roadmap to bioengineer plants that produce their own nitrogen fertilizer



Nitrogen fertilizers make it possible to feed the world's growing population, but they are also costly adn harm ecosystems. However, a few plants have evolved the ability to acquire their own nitrogen with the help of bacteria, and a new study helps explain how they did it, not once, but multiple times.
Published Study examines urban forests across the United States



Tree-planting campaigns have been underway in the United States, especially in cities, as part of climate mitigation efforts given the many environmental benefits of urban forests. But a new study finds that some areas within urban forests in the U.S., may be more capable than trees growing around city home lawns in adapting to a warmer climate.
Published How plant cold specialists can adapt to the environment



Evolutionary biologists studied spoonworts to determine what influence genome duplication has on the adaptive potential of plants. The results show that polyploids -- species with more than two sets of chromosomes -- can have an accumulation of structural mutations with signals for a possible local adaptation, enabling them to occupy ecological niches time and time again.