Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Physics: Quantum Computing
Published Saving moths may be just as important as saving the bees



Night-time pollinators such as moths may visit just as many plants as bees, and should also be the focus of conservation and protection efforts, a new study suggests.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light



Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Published The other side of the story: How evolution impacts the environment



Researchers show that an evolutionary change in the length of lizards' legs can have a significant impact on vegetation growth and spider populations on small islands in the Bahamas. This is one of the first times, the researchers say, that such dramatic evolution-to-environment effects have been documented in a natural setting.
Published Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants



Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published Understanding the tantalizing benefits of tantalum for improved quantum processors



Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production



According to new research, the amount of oxygen in one of 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. The new study identifies how a proton pumping enzyme (known as VHA) aids in global oxygen production and carbon fixation from phytoplankton.
Published Study leads to milestone advances in understanding lethal bronzing of palm trees



Scientists have identified a key chemical associated with lethal bronzing (LB) infected palm trees. LB is a bacterial disease that kills more than 20 species of palm trees in the Southern United States and Caribbean and has been devastating the Florida green industries for nearly two decades.
Published Plants can distinguish when touch starts and stops, study suggests



Even without nerves, plants can sense when something touches them and when it lets go, a study has found. In a set of experiments, individual plant cells responded to the touch of a very fine glass rod by sending slow waves of calcium signals to other plant cells, and when that pressure was released, they sent much more rapid waves. While scientists have known that plants can respond to touch, this study shows that plant cells send different signals when touch is initiated and ended.
Published Light conveyed by the signal transmitting molecule sucrose controls growth of plant roots



Researchers shows how information about the quantity of absorbed light passes from the leaves to the roots. Photosynthetic sucrose not only supplies roots with carbohydrates but also acts as a signal transmitter for light-dependent root architecture.
Published That's not nuts: Almond milk yogurt packs an overall greater nutritional punch than dairy-based



In a nutritional comparison of plant-based and dairy yogurts, almond milk yogurt came out on top, according to new research.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons



Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published Groundbreaking images of root chemicals offer new insights on plant growth



Applying imaging technology to plant roots, researchers have developed a new understanding of chemicals that are responsible for plant growth. The chemical 'roadmap' identifies where key molecules are distributed along corn roots and how their placement factors into the plant's maturation.
Published Forging a dream material with semiconductor quantum dots



Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Snapshots of photoinjection



Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Weevils, long-nosed beetles, are unsung heroes of pollination



Some of nature's most diverse pollinators often go unnoticed, even by scientists: long-snouted beetles called weevils. A new study provides a deep dive into the more than 600 species of weevils, including ones whose entire life cycles are interwoven with a specific plant that they help pollinate.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Prescribed burns encourage foul-smelling invaders



Though prescribed burns reduce wildfire threats and even improve habitat for some animals, new research shows these fires also spread stinknet, an aptly named weed currently invading superblooms across the Southwestern U.S.