Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Biology: Botany, Physics: Optics
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Which radio waves disrupt the magnetic sense in migratory birds?


Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Scientists use quantum device to slow down simulated chemical reaction 100 billion times


Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.
Published Scientists invent new way to sort cells by type using light


Researchers have developed and demonstrated a new method for high-throughput single-cell sorting that uses stimulated Raman spectroscopy rather than the traditional approach of fluorescence-activated cell sorting. The new approach could offer a label-free, nondestructive way to sort cells for a variety of applications, including microbiology, cancer detection and cell therapy.
Published Starch discovery reaps benefits for brewing, baking and milling industries



Research has brought clarity to the longstanding question of how starch granules form in the seeds of Triticeae crops -- wheat, barley, and rye -- unlocking diverse potential benefits for numerous industries and for human health.
Published Soils forming on the branches of trees are an overlooked forest habitat


A study on 'canopy soils' on old trees in Costa Rica shows they are important habitats and carbon stores that cannot easily be replaced.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published Sweet corn yield at the mercy of the environment, except for one key factor



A new analysis has identified the top factors accounting for yield variability in processing sweet corn (used for canned and frozen products), including one within the control of processors.
Published Light regulates structural conversion of chiral molecules


A team of chemists have developed a novel concept in which a mixture of molecules that behave like mirror images is converted to a single form. To this end, they use light as external energy source. The conversion is relevant e.g. for the preparation of drugs.
Published Fungi-eating plants and flies team up for reproduction



Fungi-eating orchids were found for the first time to offer their flowers to fungi-eating fruit flies in exchange for pollination, which is the first evidence for nursery pollination in orchids. This unique new plant-animal relationship hints at an evolutionary transition towards mutualistic symbiosis.
Published Blink and you'll miss these plants shooting their seeds



When witch hazel plants are ready to disperse their seeds, the woody seed capsules split open, pressure builds up, and eventually the seeds shoot out like a bullet fired from a rifle, hitting 30 feet per second in less than five milliseconds. In a new study, researchers looked into how witch hazels manage to fling heavier seeds just as fast as lighter ones. The secret lies in their spring-loaded fruits.
Published Tree mortality in the Black Forest on the rise -- climate change a key driver



Climate impacts such as dry, hot summers reduce the growth and increase the mortality of trees in the Black Forest because they negatively influence the climatic water balance, i.e., the difference between precipitation and potential evapotranspiration. That is the central finding of a long-term study of the influence of climate and climate change on trees in the Black Forest.
Published Biodiversity protects against invasions of non-native tree species


Researchers combined human and ecological factors to analyze the global scale of non-native tree species invasions. Human activity in hotspots of global trade, such as maritime ports, is linked to an increased likelihood of non-native tree species invasions. However, a high diversity of native tree species can help to curb the intensity of such invasions.
Published Fungus gnats as pollinators not pests



Many plants and crops rely on insects to pollinate them so they can reproduce. A new study has shown that several flowering plants from the group Euonymus are pollinated by fungus gnats, a dipteran insect. Specifically, they pollinate Euonymus plants which have red-petaled flowers with short stamens and yogurt-like scent. Although fungus gnats are known to pollinate hundreds of plant species, this study shows that the particular traits of red Euonymus flowers were likely to have been acquired via pollination syndrome, evolving over a process of natural selection to be pollinated specifically by fungus gnats. This research highlights the important role of Diptera, which are commonly regarded as pests, in plant diversity and evolution.
Published Heat sensor protects the Venus flytrap from fire



The sensory hairs of the Venus flytrap contain a heat sensor that warns the plant of bush fires. It reacts to rapid temperature jumps, as researchers have discovered.
Published Small urban greening projects can dramatically increase number of insect species in cities



By increasing the diversity of indigenous plants in urban areas, researchers have seen a seven times increase in the number of insect species in just three years, confirming the ecological benefits of urban greening projects.
Published Fire, disease threatening sanctuary plants for Australian wildlife



New research has revealed Australia's iconic grasstrees -- known as 'yaccas' -- play a critical role in protecting wildlife from deadly weather extremes, thereby ensuring their survival. But the grasses themselves are under threat due to back burning, clearing and disease.
Published Improvements in silicon-perovskite tandem cells that helped achieve a whopping 32.5 percent efficiency


In the ongoing quest for more efficient solar cells, the most current published record for tandem perovskite solar cells is 32.5 percent. In a new paper, researchers report on the improvements in silicon-perovskite tandem cells that have made this possible.
Published Want to know how light works? Try asking a mechanic


Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.