Showing 20 articles starting at article 861
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Biology: Botany
Published Scientists create special 'telomouse' with human-like telomeres



Researchers introduce the 'Telomouse'. By making a subtle genetic alteration in standard lab mice, they've made the mouse telomeres, which protect the chromosome ends, more closely resemble those in humans. The Telomouse model, developed by incorporating a genetic variation from a mouse species with naturally shorter telomeres, provides a valuable resource for in-depth aging and cancer research. This discovery promises to reveal new insights into the genetics of aging and may contribute to enhanced longevity and well-being.
Published Two bee species become one as researchers solve identity puzzle



A new study has found that what were thought to be two different species of native Australian bee are in fact one.
Published How to protect biocatalysts from oxygen



There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.
Published Cat-ching criminals with DNA from pet hairs



Cat hair could be the purr-fect way to catch criminals, according to researchers.
Published Intestinal bacteria metabolite promotes capture of antigens by dendritic cells



Dendritic cells are immune cells that capture and present antigens to T cells, activating an immune response. Researchers have discovered that short-chain fatty acids produced by intestinal bacteria regulate a crucial step in this process, the extension of dendritic 'arms.' This breakthrough finding could potentially lead to the development of disease prevention strategies involving beneficial bacteria and new drugs targeting the regulation of dendritic cell function.
Published Controlling organoids with light



Organoids help researchers understand biological processes in health and in disease. It is, however, difficult to influence the way in which they organize themselves into complex tissues. Now a group has found a new way to do so.
Published Protein root discovery seals future of climate-proof plants



Researchers have discovered a protein that seals plant roots to regulate the uptake of nutrients and water from the soil, the discovery could help develop climate proof crops that require less water and chemical fertilizers.
Published Researchers solve protein mystery



Researchers have uncovered that proteins use a common chemical label as a shield to protect them from degradation, which in turn affects motility and aging.
Published Genetic methods enable the use of fossil lipids as biomarkers for oxygen-producing primordial bacteria



Cyanobacteria are a key species in Earth's history, as they introduced atmospheric oxygen for the first time. The analysis of their evolution therefore provides important insights into the formation of modern aerobic ecosystems. For a long time, a certain type of fossil lipid, so-called 2-methylhopanes, was considered to be an important biomarker for Cyanobacteria in sediments, some of which are hundreds of millions of years old. However, this came into doubt when it turned out that not only Cyanobacteria but also Alphaproteobacteria are genetically capable of producing these lipids.
Published Mammalian cells may consume bacteria-killing viruses to promote cellular health



Bacteriophages, also called phages, are viruses that infect and kill bacteria, their natural hosts. But from a macromolecular viewpoint, phages can be viewed as nutritionally enriched packets of nucleotides wrapped in an amino acid shell. A study suggests that mammalian cells internalize phages as a resource to promote cellular growth and survival.
Published Discovery of three novel minorisa species, the smallest predatory marine picoplankton



Researchers have made a significant discovery by identifying and characterizing three novel species within the Minorisa genus of marine picoplankton. Before this study, only one species of Minorisa was recognized. This finding reveals previously unseen diversity of Minorisa, thereby enhancing species identification and our understanding of its ecological functions in marine ecosystems.
Published Defect in fruit fly respiratory system may provide insights into human aortic aneurysms



A team of researchers has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Scientists carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio.
Published New study finds hidden trees across Europe: A billion tons of biomass is overlooked today



Through satellite imaging a new AI driven mapping of biomass and CO2 storage shows that a huge number of trees are overlooked in Europe's urban, rural, and agricultural areas. Across Europe, researchers have discovered a billion tons of hidden biomass.
Published Bizarre new fossils shed light on ancient plankton



Recently discovered microfossils date back half a billion years. Resembling modern-day algae, they provide insight into early life in our oceans.
Published Sunflower extract fights fungi to keep blueberries fresh



Opening a clamshell of berries and seeing them coated in fuzzy mold is a downer. And it's no small problem. Gray mold and other fungi, which cause fruit to rot, lead to significant economic losses and food waste. Now, researchers report that compounds from sunflower crop waste prevented rotting in blueberries. They suggest the food industry could use these natural compounds to protect against post-harvest diseases.
Published Bacteria can enhance host insect's fertility with implications for disease control



New research reveals how the bacteria strain Wolbachia pipientis enhances the fertility of the insects it infects, an insight that could help scientists increase the populations of mosquitoes that do not carry human disease.
Published Study suggests even more reasons to eat your fiber



Health professionals have long praised the benefits of insoluble fiber for bowel regularity and overall health. New research suggests even more reasons we should be prioritizing fiber in our regular diets. Researchers found that each plant source of insoluble fiber contains unique bioactives -- compounds that have been linked to lower incidence of cardiovascular disease, cancer and Type 2 diabetes -- offering potential health benefits beyond those of the fiber itself.
Published The microbiome of fruit and vegetables positively influences diversity in the gut



In a meta-study, a research team has provided evidence that the consumption of fruit and vegetables contributes positively to bacterial diversity in the human gut.
Published Finding the genes that help kingfishers dive without hurting their brains



Scientists studied the genomes of 30 kingfisher species to try to identify the genes that allow kingfishers to dive headfirst into water without huring their brains. The researchers found that the diving birds have unusual mutations to the genes that produce tau: a protein that helps stabilize tiny structures in the brain, but which can build up in humans with traumatic brain injuries or Alzheimer's disease. The researchers suspect that these variations in the kingfishers' tau proteins might protect their brains when they dive.
Published Study shows engineered gut bacteria can treat hypertension



Newly published research proves that it's possible to treat high blood pressure by using specially engineered Lactobacillus paracasei to produce a protein called ACE2 in the gut, reducing gut angiotensin II and, in turn, lowering blood pressure. The study, done in lab rats that are predisposed to hypertension and unable to naturally produce ACE2, opens new doors in the pursuit of harnessing our body's own microbiome to regulate blood pressure.