Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Botany, Geoscience: Geology

Return to the site home page

Geoscience: Earthquakes Geoscience: Geology
Published

Breaking ground: Could geometry offer a new explanation for why earthquakes happen?      (via sciencedaily.com)     Original source 

Researchers are adding a new wrinkle to a long-held belief about what causes earthquakes in the first place.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Endangered Species Ecology: Invasive Species
Published

Frequent mowing puts poisonous weed into survival mode      (via sciencedaily.com)     Original source 

A study has found that frequent mowing of Solanum elaeagnifolium, also known as silverleaf nightshade, may help create a 'superweed.' A professor of entomology and plant pathology has been studying silverleaf nightshade for more than a decade. New findings have shown that the more silverleaf nightshade was mowed, the more it developed ways to avoid destruction. The taproot went down further, nearly 5 feet deep, in the first generation of mowed plants. More spikes popped out on the stem as a defense against caterpillars feeding on the flowers. The flowers became more toxic to caterpillars, leading to less pressure from natural predators.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Genetics Ecology: Endangered Species Ecology: Nature Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Key nutrients help plants beat the heat      (via sciencedaily.com)     Original source 

Scientists have discovered some of the molecular mechanisms controlling how plants -- including important crops like soybean and rice -- will respond to rising global temperatures, finding higher temperatures make root systems grow faster, but sustaining this increased growth speed depends on high levels of nitrogen and phosphorus in the soil. The discoveries point to the necessity of nitrogen and phosphorus-rich soil to promote crop growth and create nutritious crops, in addition to aiding a mission to create more resilient crops in the face of climate change.

Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Shape and depth of ocean floor profoundly influence how carbon is stored there      (via sciencedaily.com)     Original source 

The movement of carbon between the atmosphere, oceans and continents -- or carbon cycle -- regulates Earth's climate, with the ocean playing a major role in carbon sequestration. A new study finds that the shape and depth of the ocean floor explain up to 50% of the changes in depth at which carbon has been sequestered there over the past 80 million years. While these changes have been previously attributed to other causes, the new finding could inform ongoing efforts to combat climate change through marine carbon sequestration.

Environmental: Ecosystems Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology
Published

Fresh findings: Earliest evidence of life-bringing freshwater on Earth      (via sciencedaily.com)     Original source 

New research has found evidence that fresh water on Earth, which is essential for life, appeared about four billion years ago -- five hundred million years earlier than previously thought.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Research
Published

Tracing the evolution of ferns' surprisingly sweet defense strategy      (via sciencedaily.com)     Original source 

Plants and the animals that eat them have evolved together in fascinating ways, creating a dynamic interplay of survival strategies. Many plants have developed physical and chemical defenses to fend off herbivores. A well-known strategy in flowering plants is to produce nectar to attract 'ant bodyguards.' Recent research explores the evolution of this same defense strategy in ferns.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Geoscience: Geochemistry
Published

Researchers expose new symbiosis origin theories, identify experimental systems for plant life      (via sciencedaily.com)     Original source 

Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

What makes some plant groups so successful?      (via sciencedaily.com)     Original source 

Researchers involved in cataloguing the world's plant species are hunting for answers as to what makes some groups of plants so successful. One of their major goals is to predict more accurately which lineages of flowering plants -- some of which are of huge importance to people and to ecosystems -- are at a greater risk from global climate change.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species
Published

Scientists identify gene that could lead to resilient 'pixie' corn      (via sciencedaily.com)     Original source 

A widely found gene in plants has been newly identified as a key transporter of a hormone that influences the size of corn. The discovery offers plant breeders a new tool to develop desirable dwarf varieties that could enhance the crop's resilience and profitability.

Biology: Biochemistry Biology: Botany Chemistry: Biochemistry Ecology: Endangered Species Ecology: Nature Energy: Technology
Published

Harnessing green energy from plants depends on their circadian rhythms      (via sciencedaily.com)     Original source 

Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.

Biology: Botany Biology: Cell Biology Biology: General Ecology: Endangered Species Ecology: Nature
Published

Transgenic expression of rubisco factors increases photosynthesis and chilling tolerance in maize      (via sciencedaily.com)     Original source 

Maize is one of the world's most widely grown crops and is essential to global food security. But like other plants, its growth and productivity can be limited by the slow activity of Rubisco, the enzyme responsible for carbon assimilation during photosynthesis. Scientists have now demonstrated a promising approach to enhancing Rubisco production, thus improving photosynthesis and overall plant growth.

Environmental: General Geoscience: Environmental Issues Geoscience: Geology Geoscience: Volcanoes
Published

Earth scientists describe a new kind of volcanic eruption      (via sciencedaily.com)     Original source 

By analyzing the dynamics of 12 back-to-back explosions that happened in 2018, researchers describe a new type of volcanic eruption mechanism. The explosions were driven by sudden pressure increases as the ground collapsed, which blasted plumes of rock fragments and hot gas into the air, much like a classic stomp-rocket toy.

Biology: Biochemistry Biology: Botany Biology: Genetics Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals
Published

Key role of plant-bacteria communication for the assembly of a healthy plant microbiome supporting sustainable plant nutrition      (via sciencedaily.com)     Original source 

In an interdisciplinary study, researchers discovered that symbiotic bacteria communicate with legume plants through specific molecules and that this communication influences which bacteria grow near the plant roots. The findings provide insights into how plants and soil bacteria form beneficial partnerships for nutrient uptake and resilience. These results are a step towards understanding how communication between plants and soil bacteria can lead to specific beneficial associations providing plants with nutrients.

Biology: Biochemistry Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

New insights into the degradation dynamics of organic material in the seafloor      (via sciencedaily.com)     Original source 

Many processes in the deep sea are not yet well understood, and the role of microbial communities in particular is often a big unknown. This includes, for example, how organic material that sinks from the water surface to the ocean floor is metabolised -- an important building block for a better understanding of the global carbon cycle.

Anthropology: Cultures Anthropology: General Biology: Botany Ecology: Invasive Species
Published

Legacy of Indigenous stewardship of camas dates back more than 3,500 years      (via sciencedaily.com)     Original source 

A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.

Biology: Botany Biology: General Biology: Microbiology Ecology: Endangered Species
Published

How plants 'mate' for life and repel other suitors      (via sciencedaily.com)     Original source 

Researchers have used a unique microscopic technique to examine the dynamics of pollen tubes in the Arabidopsis plant. They were able to observe the mechanism of one-to-one pollen tube guidance, a process that ensures successful pollination of plants. This process is influenced by multi-step repelling and attracting signals. The results are important for the cultivation of crops, especially under unfavorable environmental conditions.

Chemistry: Biochemistry Chemistry: General Energy: Fossil Fuels Environmental: General Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology
Published

Can coal mines be tapped for rare earth elements?      (via sciencedaily.com)     Original source 

A team of geologists analyzed 3,500 samples taken in and around coal mines in Utah and Colorado. Their findings open the possibility that these mines could see a secondary resource stream in the form of rare earth metals used in renewable energy and numerous other high-tech applications.

Biology: Biochemistry Biology: Botany Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Severe Weather
Published

The impacts of climate change on food production      (via sciencedaily.com)     Original source 

A new study shows that climate change has led to decreased pollen production from plants and less pollen diversity than previously thought, which could have a significant impact on food production.

Chemistry: Biochemistry Chemistry: General Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology
Published

Extreme complexity in formation of rare earth mineral vital for tech industry      (via sciencedaily.com)     Original source 

Researchers have unveiled that myriad, intricate factors influence the genesis and chemistry of bastnasite and rare earth carbonates, which are critically needed for today's tech industry and its hardware outputs. Their work unveils a newly acquired depth of understanding that had previously been unexplored in this field. In combination, the findings mark a significant advancement and promise to reshape our understanding of rare earth mineral formation.