Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Not so selfish after all: Viruses use freeloading genes as weapons      (via sciencedaily.com)     Original source 

Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Scientists map how deadly bacteria evolved to become epidemic      (via sciencedaily.com)     Original source 

Pseudomonas aeruginosa -- an environmental bacteria that can cause devastating multidrug-resistant infections, particularly in people with underlying lung conditions -- evolved rapidly and then spread globally over the last 200 years, probably driven by changes in human behavior, a new study has found.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Never-before-seen view of gene transcription captured      (via sciencedaily.com)     Original source 

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Ecology: Nature Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Oceanography
Published

Retreating glaciers: Fungi enhance carbon storage in young Arctic soils      (via sciencedaily.com)     Original source 

Melting Arctic glaciers are in rapid recession, and microscopic pioneers colonize the new exposed landscapes. Researchers revealed that yeasts play an important role in soil formation in the Arctic.

Chemistry: Inorganic Chemistry Physics: General
Published

Scientists discover way to 'grow' sub-nanometer sized transistors      (via sciencedaily.com)     Original source 

A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize an improved building block for medicines      (via sciencedaily.com)     Original source 

Research could help drug developers improve the safety profiles of medications and reduce side effects.

Biology: Biochemistry Biology: Microbiology Biology: Zoology
Published

Pasteurization inactivates highly infectious avian flu in milk, study suggests      (via sciencedaily.com)     Original source 

Researchers found no infectious virus in the sampled pasteurized milk products tested for H5N1.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Mechanism of bio-inspired control of liquid flow      (via sciencedaily.com)     Original source 

The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials      (via sciencedaily.com)     Original source 

In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Advancing toward a preventative HIV vaccine      (via sciencedaily.com)     Original source 

A major challenge in developing a vaccine for HIV is that the virus mutates fast -- very fast. Although a person initially becomes infected with one or a few HIV strains, the virus replicates and mutates quickly, resulting in a 'swarm' of viral strains existing in a single body.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors      (via sciencedaily.com)     Original source 

A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.

Biology: Biochemistry Biology: Microbiology
Published

Bacteria detected in tattoo and permanent makeup inks, study finds      (via sciencedaily.com)     Original source 

A new study detected both aerobic and anaerobic bacteria in tattoo and permanent makeup inks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Research shows how RNA 'junk' controls our genes      (via sciencedaily.com)     Original source 

Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.

Biology: General Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

An ant that selectively amputates the infected limbs of wounded sisters      (via sciencedaily.com)     Original source 

Saving lives through surgery is no longer exclusive to humans. Scientists now detail how Florida carpenter ants, a common, brown species native to its namesake, selectively treat the wounded limbs of fellow nestmates -- either by wound cleaning or amputation. When experimentally testing the effectiveness of these 'treatments,' not only did they aid in recovery, but the research team found the ants' choice of care catered to the type of injury presented to them.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Microbiology Ecology: Endangered Species Ecology: General Ecology: Research Ecology: Sea Life Environmental: Ecosystems
Published

Study illuminates cues algae use to 'listen' to their environment      (via sciencedaily.com)     Original source 

New research shows how a small group of single-celled algae are able to use chemical cues to communicate stress information. Understanding this ability, once thought unique to plants, helps illuminate the complex evolutionary history of plants and algae.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Shrinking glaciers: Microscopic fungi enhance soil carbon storage in new landscapes created by shrinking Arctic glaciers      (via sciencedaily.com)     Original source 

Shrinking glaciers expose new land in the Arctic, creating unique ecosystems. Researchers studied how microbes colonize these barren landscapes. The study reveals a crucial role for specific fungal species in capturing and storing carbon in the newly formed soil. These findings suggest fungi are essential for future carbon storage in the Arctic as glaciers continue to recede.