Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Degradation of cell wall key in the spread of antibiotic resistance      (via sciencedaily.com)     Original source 

A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers thwart resistant bacteria's strategy      (via sciencedaily.com)     Original source 

Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Melanin from cuttlefish ink as a sustainable biomass resource      (via sciencedaily.com)     Original source 

Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.

Biology: Botany Biology: Microbiology Ecology: Endangered Species Offbeat: General Offbeat: Plants and Animals Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

This desert moss has the potential to grow on Mars      (via sciencedaily.com)     Original source 

The desert moss Syntrichia caninervis is a promising candidate for Mars colonization thanks to its extreme ability to tolerate harsh conditions lethal to most life forms. The moss is well known for its ability to tolerate drought conditions, but researchers now report that it can also survive freezing temperatures as low as 196 C, high levels of gamma radiation, and simulated Martian conditions involving these three stressors combined. In all cases, prior dehydration seemed to help the plants cope.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Synthetic fuels and chemicals from CO2: Ten experiments in parallel      (via sciencedaily.com)     Original source 

Why do just one experiment at a time when you can do ten? Researchers have developed an automated system, which allows them to research catalysts, electrodes, and reaction conditions for CO2 electrolysis up to ten times faster. The system is complemented by an open-source software for data analysis.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New materials: Synthetic pathway for promising nitride compounds discovered      (via sciencedaily.com)     Original source 

Chemists have successfully synthesized Ruddlesden-Popper nitrides for the first time, opening the door to new materials with unique properties.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Microbiology Biology: Zoology Ecology: Animals
Published

New mathematical model sheds light on the absence of breastfeeding in male mammals      (via sciencedaily.com)     Original source 

Mathematicians ave put forward a hypothesis which suggests that the reason male mammals don't breastfeed might be driven by the rich community of microbes that lives in breast milk and which plays an important part in establishing the gut microbiome of the infant.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Marine Biology: Microbiology Ecology: Sea Life Geoscience: Geochemistry
Published

Long-standing marine mystery solved: How algae get nitrogen to grow      (via sciencedaily.com)     Original source 

Scientists shed light on an unexpected partnership: A marine diatom and a bacterium that can account for a large share of nitrogen fixation in vast regions of the ocean. This symbiosis likely plays a key role for global marine nitrogen fixation and productivity, and thus uptake of carbon dioxide. The newly-discovered bacterial symbiont is closely related to the nitrogen-fixing Rhizobia which live in partnership with many crop plants and may also open up new avenues for engineering nitrogen-fixing plants.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Aromatic compounds: A ring made up solely of metal atoms      (via sciencedaily.com)     Original source 

The term aromaticity is a basic, long-standing concept in chemistry that is well established for ring-shaped carbon compounds. Aromatic rings consisting solely of metal atoms were, however, heretofore unknown. A research team recently succeeded in isolating such a metal ring and describing it in full.

Biology: Evolutionary Biology: General Biology: Marine Biology: Microbiology Ecology: Animals Ecology: Extinction Ecology: Sea Life Environmental: Ecosystems
Published

To protect corals from summer heatwaves, we should help their microbial symbionts evolve heat tolerance in the lab      (via sciencedaily.com)     Original source 

Most coral reef restoration efforts involve restocking reefs with nursery-grown corals. However, if these corals are of the same stock as their wild counterparts, they will be equally vulnerable to the heat stress that caused the bleaching event in the first place. Researchers discuss the potential of improving corals' chances by inducing the evolution of heat tolerance in their symbionts -- the mutualistic microbes that provide corals with nutrients in exchange for shelter and that are expelled during coral bleaching.

Biology: Biochemistry Biology: Microbiology Biology: Zoology
Published

Bird flu stays stable on milking equipment for at least one hour      (via sciencedaily.com)     Original source 

H5N1 virus in unpasteurized milk is stable on metal and rubber components of commercial milking equipment for at least one hour, increasing its potential to infect people and other animals.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A promising weapon against measles      (via sciencedaily.com)     Original source 

What happens when measles virus meets a human cell? The viral machinery unfolds in just the right way to reveal key pieces that let it fuse itself into the host cell membrane.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Scientists use computational modeling to guide a difficult chemical synthesis      (via sciencedaily.com)     Original source 

Researchers have discovered a new way to drive chemical reactions that could generate a wide variety of azetidines -- four-membered nitrogen heterocycles that have desirable pharmaceutical properties.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Marine Biology: Microbiology Ecology: Sea Life Offbeat: General Offbeat: Plants and Animals
Published

Under pressure: How comb jellies have adapted to life at the bottom of the ocean      (via sciencedaily.com)     Original source 

Researchers have studied the cell membranes of ctenophores ('comb jellies') and found they had unique lipid structures that allow them to live under intense pressure.

Anthropology: General Biology: General Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Geoscience: Earth Science Geoscience: Geology Paleontology: Fossils Paleontology: General
Published

Why the harsh Snowball Earth kick-started our earliest multicellular ancestors      (via sciencedaily.com)     Original source 

Why did multicellularity arise? Solving that mystery may help pinpoint life on other planets and explain the vast diversity and complexity seen on Earth today, from sea sponges to redwoods to human society. A new article shows how specific physical conditions -- especially ocean viscosity and resource deprivation -- during the global glaciation period known as Snowball Earth could have driven eukaryotes to turn multicellular.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Cell division: Before commitment, a very long engagement      (via sciencedaily.com)     Original source 

Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Unlocking the world of bacteria      (via sciencedaily.com)     Original source 

Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The on-and-off affair in DNA      (via sciencedaily.com)     Original source 

Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.