Showing 20 articles starting at article 881

< Previous 20 articles        Next 20 articles >

Categories: Biology: Microbiology, Engineering: Biometric

Return to the site home page

Biology: General Biology: Marine Biology: Microbiology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Greenhouse gases in oceans are altered by climate change impact on microbes      (via sciencedaily.com)     Original source 

The ocean is a global life-support system, and climate change causes such as ocean warming, acidification, deoxygenation, and nitrogen-deposition alter the delicate microbial population in oceans. The marine microbial community plays an important role in the production of greenhouse gases like nitrous oxide and methane. Scientists have explored the climate change impact on marine microbes. Their research helps raise awareness about climate change severity and the importance of ocean resources.

Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

The ocean may be storing more carbon than estimated in earlier studies      (via sciencedaily.com)     Original source 

The ocean's capacity to store atmospheric carbon dioxide is some 20% greater than the estimates contained in the latest IPCC report. Scientists looked at the role played by plankton in the natural transport of carbon from surface waters down to the seabed. Plankton gobble up carbon dioxide and, as they grow, convert it into organic tissue via photosynthesis.

Biology: Biochemistry Biology: General Biology: Microbiology
Published

Bacteria's mucus maneuvers: Study reveals how snot facilitates infection      (via sciencedaily.com)     Original source 

Sniffles, snorts and blows of runny noses are the hallmarks of cold and flu season -- and that increase in mucus is exactly what bacteria use to mount a coordinated attack on the immune system, according to a new study. The team found that the thicker the mucus, the better the bacteria are able to swarm. The findings could have implications for treatments that reduce the ability of bacteria to spread.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

More than 100 'magic mushroom' genomes point the way to new cultivars      (via sciencedaily.com)     Original source 

Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases      (via sciencedaily.com)     Original source 

While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Pathogens use force to breach immune defenses, study finds      (via sciencedaily.com)     Original source 

New research has revealed a previously unknown process through which pathogens are able to defeat a cell's defense mechanisms with physical force. The discovery represents a potential game-changer in the fight against intracellular pathogens, which cause infectious diseases such as tuberculosis, malaria and chlamydia.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

A patch of protection against Zika virus      (via sciencedaily.com)     Original source 

A simple-to-apply, needle-free vaccine patch is being developed to protect people from the potentially deadly mosquito-borne Zika virus.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Shedding light on the synthesis of sugars before the origin of life      (via sciencedaily.com)     Original source 

Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability on early Earth is unclear since these molecules are unstable. Now, researchers reveal a chemical pathway compatible with early Earth conditions, by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding life's origin.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Harnessing the power of a parasite that can stop pain      (via sciencedaily.com)     Original source 

For the first time, scientists have begun to figure out why the disfiguring skin lesions caused by cutaneous leishmaniasis don't hurt.

Biology: Microbiology Environmental: Biodiversity Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Inoculation against diseased fields      (via sciencedaily.com)     Original source 

Farmland often harbors a multitude of pathogens which attack plants and reduce yields. A research team has now shown that inoculating the soil with mycorrhizal fungi can help maintain or even improve yields without the use of additional fertilizers or pesticides. In a large-scale field trial, plant yield increased by up to 40 percent.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Geoscience: Geochemistry
Published

Armed to the hilt: Study solves mystery behind bacteria's extensive weaponry      (via sciencedaily.com)     Original source 

A new study tackles the mystery of why bacteria often carry diverse ranges of weapons. The findings show that different weapons are best suited to different competition scenarios. Short-range weapons help bacteria to invade established communities; long-range weapons are useful once established.

Biology: Biochemistry Biology: Microbiology Biology: Zoology
Published

This 'gross' mixture has big benefits for the study of bacteria      (via sciencedaily.com)     Original source 

Researchers have discovered that growing bacteria on agar mixed with organs is an efficient and effective way to study infectious pathogens.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Biochemistry Biology: General Biology: Microbiology
Published

Study of ancient British oral microbiomes reveals shift following Black Death      (via sciencedaily.com)     Original source 

The Second Plague Pandemic of the mid-14th century, also known as the Black Death, killed 30-60 percent of the European population and profoundly changed the course of European history. New research suggests that this plague, potentially through resulting changes in diet and hygiene, may also be associated with a shift in the composition of the human oral microbiome toward one that contributes to chronic diseases in modern-day humans.  

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clever dosage control mechanism of biallelic genes      (via sciencedaily.com)     Original source 

Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Researchers decipher enzyme scissors of intestinal microbes      (via sciencedaily.com)     Original source 

Fruit and vegetables contain a variety of plant natural products such as flavonoids, which give fruits their colour and are said to have health-promoting properties. Most plant natural products occur in nature as glycosides, i.e. chemical compounds with sugars. In order for humans to absorb the healthy plant natural products, the sugar must be split off in the intestine. Microorganisms in the intestinal flora help to speed up the process. So-called C-glycosides, i.e. plant natural products with a carbon-based bond to a sugar, would even be practically indigestible without the intestinal microbes (e.g. nothofagin in rooibos tea).