Showing 20 articles starting at article 981
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Physics: Quantum Computing
Published Ants recognize infected wounds and treat them with antibiotics



The African Matabele ants are often injured in fights with termites. Their conspecifics recognize when the wounds become infected and initiate antibiotic treatment.
Published First step towards synthetic CO2 fixation in living cells



Three modules forming a new-to-nature CO2 fixation cycle have been successfully implemented in E.coli.
Published Polymers that can kill bacteria



Scientists have created a new family of polymers capable of killing bacteria without inducing antibiotic resistance -- a major step in the fight against superbugs like E. coli and MRSA.
Published Laser-driving a 2D material



Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.
Published Researchers map how measles virus spreads in human brain



Researchers mapped how the measles virus mutated and spread in the brain of a person who succumbed to a rare, lethal brain disease. New cases of this disease, which is a complication of the measles virus, may occur as measles reemerges among the unvaccinated, say researchers.
Published Location, location, location: The hidden power of intracellular neighborhoods



New findings provide details about the hidden organization of the cytoplasm, showing it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins. The findings hold promise for increasing or altering the production of proteins in mRNA vaccines and therapies.
Published Inside the matrix: Nanoscale patterns revealed within model research organism



Following years of research and the power of a technologically advanced instrument, scientists have detailed the complex nanoscale exoskeleton patterns of the roundworm, a model laboratory organism, revealing clues about how skin layers are bound together.
Published The key mechanism to cell growth has been elucidated



Researchers have discovered how amino acids activate a key cell, TORC1, which is a master regulator in living organisms that controls whether cells grow or recycle their contents in yeast. Notably, the team found that the amino acid cysteine is sensed by a protein called Pib2 and that the two bind together to trigger TORC1. This is important because faulty TORC1 has been linked to disease such as cancer.
Published Bugs that help bugs: How environmental microbes boost fruit fly reproduction



A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.
Published Researchers solve mystery behind DnaA protein's role in DNA replication initiation



Scientists have uncovered how DnaA, the master key to DNA replication, opens the door to bacterial growth. This breakthroughpaves the way for new antibiotics to combat the rising tide of antibiotic resistance.
Published New insights revealed on tissue-dependent roles of JAK signaling in inflammation



Researchers have gained a deeper understanding of the nuanced roles of JAK inhibitors, or modulators, in inflammation across various cell types and tissues.
Published Unconventional magnets: Stress reduces frustration



An international research team recently demonstrated how magnetism can be actively changed by pressure.
Published How researchers are 'CReATiNG' synthetic chromosomes faster and cheaper



A new technique to clone and reassemble DNA, dubbed CReATiNG, could simplify and lower the cost to make synthetic chromosomes. Potential applications are numerous, including pharmaceutical production, biofuel generation, cancer therapies, and environmental cleanup using modified organisms. The method adds a powerful, versatile tool to the burgeoning field of synthetic biology.
Published Discovery: Plants use 'Trojan horse' to fight mold invasions



Scientists have discovered that plants send tiny, innocuous-seeming lipid 'bubbles' filled with RNA across enemy lines, into the cells of the aggressive mold. Once inside, different types of RNA come out to suppress the infectious cells that sucked them in.
Published Unveiling ancient secrets: 3D preservation of trilobite soft tissues sheds light on convergent evolution of defensive enrollment



Researchers describe unusual trilobite fossils prepared as thin sections showing the 3D soft tissues during enrollment. The study reveals the soft undersides of enrolled trilobites and the evolutionary mechanism that allows arthropods to enroll their bodies for protection from predators and adverse environmental conditions.
Published Shedding light on the microbiome and kidney stones



A new study has found changes in the microbiome in multiple locations in the body are linked to the formation of kidney stones.
Published A trillion scents, one nose



A research team has uncovered a previously undetected mechanism in mice -- starring the genetic molecule RNA -- that could explain how each sensory cell, or neuron, in mammalian noses becomes tailored to detect a specific odor chemical.
Published Cells of the future: A key to reprogramming cell identities



The intricate process of duplicating genetic information, referred to as DNA replication, lies at the heart of the transmission of life from one cell to another and from one organism to the next. This happens by not just simply copying the genetic information; a well-orchestrated sequence of molecular events has to happen at the right time. Scientists have recently uncovered a fascinating aspect of this process known as 'replication timing' (RT) and how special this is when life commences.
Published Multitasking microbes: Scientists engineer bacteria to make two valuable products from plant fiber



Researchers have engineered bacteria that can produce two chemical products at the same time from underutilized plant fiber. And unlike humans, these multitasking microbes can do both things equally well. The discovery could help make biofuels more sustainable and commercially viable.
Published The evolutionary timeline of diminished boric acid and urea transportation in aquaporin 10



Aquaporin (Aqp) 10 water channels in humans allow the free passage of water, glycerol, urea, and boric acid across cells. However, Aqp10.2b in pufferfishes allows only the passage of water and glycerol and not urea and boric acid. Researchers sought to understand the evolutionary timeline that resulted in the variable substrate selection mechanisms among Aqp10s. Their results indicate that Aqp10.2 in ray-finned fishes may have reduced or lost urea and boric acid permeabilities through evolution.